Geometric GRT actions and Deligne's conjecture on Hochschild cochains

Sonja M. Farr

University of Nevada, Reno

December 11, 2024

э

The Setup

~ .		_
500	<u>л</u>	L

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The absolute Galois group and GRT

<u>Grothendieck '84:</u> Study $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ via its actions on profinite fundamental group of moduli spaces of marked curves.

<u>Ihara '90:</u> This yields inclusion $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \hookrightarrow \widehat{GT}$ and $\widehat{GT} \subseteq \widehat{\mathbb{Z}}^{\times} \times \widehat{\mathbb{F}}_2$ can be given by explicit equations.

<u>Drinfeld '90:</u> Pro-unipotent version $GT(k) \subseteq k^{\times} \times \hat{\mathbb{F}}_2(k)$ acting on quasitriangular quasi-Hopf algebras over $k[[\hbar]]$.

<u>Brown '14:</u> We have an inclusion $\mathcal{G}_{dR}^{mot} \hookrightarrow GT(k)$.

Goal

We want to study \mathcal{G}_{dR}^{mot} through understanding GT(k).

GRT as homotopy operad automorphism group

B. Fresse:

$$\operatorname{GT}(k)$$
 $\xrightarrow{\times}$ $\operatorname{Grp}(\widehat{\mathcal{P}a\mathcal{C}\mathcal{D}})$ $\operatorname{GRT}(k)$

 $\hat{\mathcal{P}}a\hat{\mathcal{B}}(k) = Malcev \text{ completion of } \mathcal{P}a\mathcal{B}$

 $\mathcal{P}a\mathcal{B}\simeq \Pi_1(\mathbb{E}_2)$

C		N /		
Son	a		⊢a	rr

3

Kontsevich conjetured: GRT acts on Hochschild cohomology of a scheme

Theorem [V. Dolgushev, C. Rogers, T. Willwacher, 2015]

GRT acts as automorphisms on the Gerstenhaber algebra of polyvector fields

 $H^*(X, \mathcal{T}^{\bullet}_{\mathsf{poly}}(X))$

of a smooth complex variety X via contraction with the odd components of the Chern character of X.

Theorem [D. Calaque, M. Van den Bergh, 2010]

$$H^*(X, \mathcal{T}^{\bullet}_{\operatorname{poly}}(X)) \xrightarrow{\operatorname{HKR}\circ\operatorname{Td}(X)^{1/2}} HH^*(X)$$

A B F A B F

What am I doing?

DRW's proof relies on:

- Explicit Čech resolutions
- Identification of the Lie algebra of GRT with graph cohomology

Question

Can we find a conceptual proof of this theorem using techniques from operadic homotopy theory and DAG? Will this lead to new geometric examples of GRT actions?

Deligne's Conjecture on Hochschild cochains

э

A primer on operads

Definition

Let C be a closed symmetric monoidal category. An operad O in C is given by a collection of "*n*-ary operations" $O(n) \in C$ equipped with an action of the symmetric group S_n and equivariant insertion operations

$$\circ: \mathcal{O}(n)\otimes \mathcal{O}(k_1)\otimes \cdots \otimes \mathcal{O}(k_n) \rightarrow \mathcal{O}(k_1+\cdots+k_n)$$

subject to unitality and associativity constraints.

Example

•
$$\mathcal{A}ssoc(n) = S_n$$

•			
Son	ıa N	/ ⊢	-arr
501			

- 4 回 ト 4 回 ト

Algebras and modules

Definition

An algebra $A \in C$ over an operad O is a morphism of operads

 $\mathcal{O} \to \mathcal{E}nd(A).$

For any operad \mathcal{O} there is a two-colored operad $M\mathcal{O}$ such that algebras over $M\mathcal{O}$ correspond to pairs (A, M) with $A \in \operatorname{Alg}_{\mathcal{O}}(\mathcal{C})$ and M an A-module over \mathcal{O} .

Homotopy theory of operads

Definition

Let \mathcal{O} be an operad in a (well-behaved) monoidal model category. A homotopy \mathcal{O} -algebra is an algebra over a cofibrant replacement $\mathcal{O}_{\infty} \xrightarrow{\simeq} \mathcal{O}$.

Example

- Homotopy associative = \mathbb{A}_{∞}
- Homotopy Lie = L_{∞}

\rightsquigarrow There is an ∞ -categorical version of operads: ∞ -operads

< □ > < 同 > < 回 > < 回 > < 回 >

Little k-disks operads

$\mathcal{A}\textit{ssoc} \simeq \mathbb{E}_1 \subseteq \mathbb{E}_2 \subseteq \dots \subseteq \mathbb{E}_\infty \simeq \mathcal{C}\textit{omm}$

Little 2-disks operad \mathbb{E}_2 :

∃ >

11/28

Homology of the little 2-disks operad

Symmetric monoidal model category/ ∞ -category Ch(k) of complexes of k-modules with $k \supseteq \mathbb{Q}$.

 \mathcal{O} topological operad $\rightsquigarrow C_*(\mathcal{O})$ dg-operad with $C_*(\mathcal{O})(n) = C_*(\mathcal{O}(n); k)$

Theorem [F. Cohen, 1976]

 $H_*(\mathbb{E}_2)\simeq \mathcal{G}er$

 $\rightsquigarrow A \text{ a } \mathcal{C}_*(\mathbb{E}_2)\text{-algebra} \Rightarrow \mathcal{H}_*(A) \text{ a } \mathcal{G}\textit{er}\text{-algebra}.$

Degree 0 product

$$\cup: \mathit{C}_* \otimes_k \mathit{C}_* \to \mathit{C}_* \quad \text{associative and commutative}$$

Degree 1 "Lie bracket"

 $[-,-]: \mathcal{C}_* \otimes_k \mathcal{C}_* o \mathcal{C}_*[1]$ Jacobi and Leibnitz identity

Image: A matrix

Deligne's Conjecture on Hochschild cochains

Proposition [M. Gestenhaber '62]

If A is an assoicative algebra, then the Hochschild cohomology $HH^*(A, A)$ has the structure of an algebra over Ger with the cup product

$$(f \cup g)(a_1 \otimes \cdots \otimes a_{p+q}) = (-1)^{pq} f(a_1 \otimes \cdots \otimes a_p) g(a_{p+1} \otimes \cdots \otimes a_{p+q})$$

and the Gerstenhaber bracket

$$[f,g]_G = f \circ g - (-1)^{(p-1)(q-1)}g \circ f.$$

Deligne's Conjecture 1993

There exists a natural action of the operad $C_*(\mathbb{E}_2)$ on the Hochschild complex $C^*(A, A)$ that descends to the canonical *Ger*-algebra structure on cohomology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many proofs

Tamarkin ('98)
Voronov ('99)
McClure-Smith ('99)
Construct operads ~ E₂ acting on C*(A, A)

Conceptual explanation of why we should expect this action [Hu-Kriz-Voronov, 2005]:

 $C^*(A,A) \simeq \mathbb{R}\mathcal{H}om_{A \otimes A^{\mathrm{op}}}(A,A)$

Eckmann-Hilton argument

Theorem

C be a closed monoidal, tensor unit I. Then

 $\mathcal{H}om(I,I) \in \mathcal{C}$

is a commutative algebra.

 $I \xrightarrow{f} I \xrightarrow{g} I$

$$I \xrightarrow{\cong} I \otimes I \xrightarrow{f \otimes g} I \otimes I \xrightarrow{\cong} I.$$

э

∞ -operadic Eckmann-Hilton argument

Dunn additivity theorem [J. Lurie, 2017]

Let C be a symmetric monoidal ∞ -category. The morphism $\rho : \mathbb{E}_k \times \mathbb{E}_{k'} \to \mathbb{E}_{k+k'}$ given by taking product spaces of disks induces an equivalence of ∞ -categories

$$\operatorname{Alg}_{\mathbb{E}_{k+k'}}(\mathcal{C}) \xrightarrow{\rho^*} \operatorname{Alg}_{\mathbb{E}_k}(\operatorname{Alg}_{\mathbb{E}_{k'}}(\mathcal{C})).$$

Corollary

The category of 2-algebras $Alg_{Assoc}(Alg_{Assoc}(\mathcal{C}))$ is equivalent to the category of \mathbb{E}_2 -algebras $Alg_{\mathbb{E}_2}(\mathcal{C})$.

The derived center

 \rightsquigarrow Show that the Hochschild complex is an endomorphism object of a monoidal unit in a suitable monoidal $\infty\text{-}category.$

<u>Slogan</u>: The Hochschild cohomology is the derived center of the associative algebra.

Definition

Let C be a monoidal ∞ -category. A center of $M \in C$ is a final object $\mathfrak{z}(M)$ in $\mathrm{LMod}(\mathcal{C}) \times_{\mathcal{C}} \{M\}$.

In particular, $\mathfrak{z}(M) \in Alg_{\mathbb{E}_1}(\mathcal{C})$ is an algebra object in the underlying category.

The Hochschild complex as center

Proposition [J. Lurie, 2017]

Let $A \in Alg_{\mathcal{O}}(\mathcal{C})$. Then if the center of A exists, it is given by

 $\mathfrak{z}(A) \simeq \mathsf{Mor}_{\mathsf{Mod}^{\mathcal{O}}_{A}(\mathcal{C})}(A, A) \in \mathcal{C}.$

Theorem [F.]

Let A be an associative algebra viewed as object of $\operatorname{Alg}_{\mathbb{E}_1}(\operatorname{Ch}(k))$. Then the Hochschild complex $C^*(A, A)$ is a center of A. In particular, $C^*(A, A) \in \operatorname{Alg}_{\mathbb{E}_1}(\operatorname{Alg}_{\mathbb{E}_1}(\operatorname{Ch}(k))) \simeq \operatorname{Alg}_{\mathbb{E}_2}(\operatorname{Ch}(k))$ is an \mathbb{E}_2 -algebra in chain complexes.

The Gerstenhaber operations of an \mathbb{E}_2 -algebra

 \rightsquigarrow Have to show that this yields the correct Gerstenhaber algebra structure on homology.

Given a 2-algebra, how does the product and bracket act in the \mathbb{E}_2 -algebra structure induced by Dunn additivity?

 $\begin{array}{l} \mbox{Product}\sim\mbox{choice of basepoint in }\mathbb{E}_2(2)\simeq S^1\\ \mbox{Bracket}\sim\mbox{choice of loop in }\mathbb{E}_2(2)\simeq S^1 \end{array}$

Theorem [F.]

Let $A \in Alg_{\mathbb{E}_1}(Alg_{\mathbb{E}_1}(Ch(k)))$ be a 2-algebra with products m_1 and m_2 and interchange law

$$\begin{array}{c} A\otimes A\otimes A\otimes A \xrightarrow{m_2\otimes m_2} A\otimes A \\ m_1\otimes m_1\circ (\mathrm{id}\otimes \tau\otimes \mathrm{id}) \Big \downarrow & \swarrow \\ A\otimes A \xrightarrow{m_2} & A \end{array}$$

given by the 2-simplex $h: A^{\otimes_k 4} \to A[1]$ and let h' be the corresponding 2-simplex for the opposite multiplications. Then the bracket of the induced \mathbb{E}_2 -algebra is given by the 2-simplex

$$h\iota_{2,3} + h'\iota_{1,4} + h'\iota_{2,3} + h\iota_{1,4},$$

where $\iota_{i,j} : A^{\otimes_k 2} \to A^{\otimes_k 4}$ is the appropriate inclusion.

Recovering the Gerstenhaber bracket

Corollary

The \mathbb{E}_2 -algebra induced by the 2-algebra structure on $C^*(A, A)$ above carries the classical Gerstenhaber algebra structure in cohomology.

The Hochschild cohomology of a scheme

Hochschild cohomology of a scheme

 \rightsquigarrow Globalize this from *k*-algebras to (smooth separated finite type) schemes <u>Question</u>: What is the correct Hochschild cohomology of *X*? R. Swan:

$$HH^*(X) := \operatorname{Ext}^*_{\mathcal{O}_{X \times X}}(\Delta_*\mathcal{O}_X, \Delta_*\mathcal{O}_X)$$

 \rightsquigarrow Does not carry a natural Gerstenhaber bracket

Polydilfferential operators

M. Kontsevich: $HH^*(X) := \mathbb{H}^*(X, \mathcal{D}^*_{poly}(X))$, with

$$\mathcal{D}^*_{\mathsf{poly}}(X)(\mathsf{Spec}(A)) = D^*_{\mathsf{poly}}(A) \subseteq C^*(A, A)$$

maps $A^{\otimes n} \to A$ that are differential operators in each argument.

$$\rightsquigarrow \mathcal{D}^*_{\mathsf{poly}}(X) \in \mathsf{Alg}_{\mathcal{G}er}(\mathcal{D}_\infty(\mathsf{Sh}_k(X)))$$

26 / 28

I suggest that the most natural definition is to define the Hochschild cochain complex of X to be

$$\mathfrak{z}(\mathcal{O}_X)\in \mathsf{Alg}_{\mathbb{E}_1}(\mathsf{Alg}_{\mathbb{E}_1}(\mathcal{D}_\infty(\mathsf{Sh}_k(X))).$$

Sonja M. Farr

The Hochschild cohomology of a scheme Decer

December 11, 2024

27 / 28

Comparison to the classical homotopy Gerstenhaber structure

 \rightsquigarrow Want to show that this agrees with the definition via polydifferential operators

Theorem [F.], 90% proven

The sheaf of polydifferntial operators is a center of $\mathcal{O}_X \in Alg_{\mathbb{E}_1}(\mathcal{D}_{\infty}(Sh_k(X))).$

<u>Question</u>: Does the induced \mathbb{E}_2 -structure on $\mathcal{D}^*_{\text{poly}}(X)$ agree with the one obtained by "classical" proofs of Deligne's conjecture?

Work in progress: Use formal geometry "Gelfand-Fuchs trick"