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Abstract. This paper provides an explicit interface between J. Lurie’s work on higher centers,
and the Hochschild cohomology of an algebraic k-scheme within the framework of deformation
quantization. We first recover a canonical solution to Deligne’s conjecture on Hochschild cochains
in the affine and global cases, even for singular schemes, by exhibiting the Hochschild complex as a
∞-operadic center. We then prove that this universal E2-algebra structure precisely agrees with the
classical Gerstenhaber bracket and cup product on cohomology in the affine and smooth cases. This
last statement follows from our main technical result which allows us to extract the Gerstenhaber
bracket of any E2-algebra obtained from a 2-algebra via Lurie’s Dunn additivity theorem.

Contents
1 Introduction 2

2 Preliminaries 5
2.1 Morphism objects and operadic centers . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Tensor product of ∞-operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The little cubes operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Deligne’s conjecture on Hochschild cochains . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Polydifferential operators and formality morphisms . . . . . . . . . . . . . . . . . . . 15

3 The bracket operation on 2-algebras 16
3.1 The bracket operation of an E2-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The bracket operation of a 2-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Recovering the Hochschild complex as E1-center 23
4.1 The dg nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Rectification of algebras over an ∞-operad . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 The Hochschild complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



4.4 The center as endomorphism object of bimodules . . . . . . . . . . . . . . . . . . . . 27
4.5 The category of E1-modules in chain complexes . . . . . . . . . . . . . . . . . . . . . 29
4.6 The trouble with universal enveloping algebras . . . . . . . . . . . . . . . . . . . . . 30
4.7 Morphism objects in dg model categories . . . . . . . . . . . . . . . . . . . . . . . . 32

5 The Hochschild complex of a scheme 33
5.1 The ∞-category of sheaves of k-modules . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 The Hochschild complex of a scheme is local . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Recovering polydifferential operators as the center of OX . . . . . . . . . . . . . . . 42
5.4 The Ger∞-structures on an E2-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Comparison to the classical homotopy Gerstenhaber algebra structure on polydiffer-

ential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A The endomorphism ∞-category 48

References 51

1 Introduction
M. Kontsevich’s formality theorem in deformation quantization states that the Hochschild-Kostant-
Rosenberg map lifts to a morphism of homotopy Gerstenhaber algebras between polyvector fields
and polydifferential operators of a smooth manifold. In [Tam03], D. Tamarkin found an algebraic
proof of this theorem, extending it from manifolds to affine space Ank where k is any field of char-
acteristic zero by showing that the operad of little 2-disks is formal and using Deligne’s conjecture
on Hochschild cochains. This proof also highlights that these formality morphisms for the smooth
Hochschild cochains are non-canonical, since Tamarkin’s little disks formality depends on the choice
of a Drinfeld associator.

In fact, using results from D. Bar-Natan [BN98], Tamarkin later showed in [Tam02] that his
proof essentially identifies Drinfeld’s associators with operad isomorphisms between the operad of
parenthesized braids and the operad of parenthesized chord diagrams which are the identity on
objects.

Based on Tamarkin’s results, Kontsevich conjectured in [Kon03] that the Grothendieck-Teichmüller
group (GT) should act on formality isomorphisms between Tpoly(X) and Dpoly(X) of a smooth
complex variety, and that this action should be of motivic nature, arising as a consequence of the
fact that the equations in the Knizhnik-Zamoldchikov associator are periods. This conjecture was
proved by V. Dolgushev, C. Rogers and T. Willwacher in [DRW15]. They were able to show that
the Deligne-Drinfeld elements of the Grothendieck-Teichmüller group act by contraction with the
odd components of the Chern character of the variety on the cohomology of the sheaf of polyvector
fields. In particular, they were able to give examples for which this action is non-trivial.

Dolgushev-Rogers-Willwacher use a result by D. Calaque and M. Van den Bergh in [CVdB10]
which shows that the Kontsevich formality theorem can be extended to non-affine cases by adding
a correction term to the HKR map which depends on the Atiyah class of the variety. Astonishingly,
this correction term has the form J1/2 with J = det (q(At(X))) the Todd class of the variety and

q(x) =
ex/2 − e−x/2

x
.
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This is clearly reminiscent of (Kontsevich’s generalization of) the classical Duflo isomorphism the-
orem, which states that for any finite dimensional Lie algebra g, we get an algebra isomorphism

PBW ◦ det(q(ad))1/2 : S(g)g
∼=−→ U(g)g.

It is a result by A. Alekseev and C. Torossian [AT12] that the Grothendieck-Teichmüller group also
acts on "classical" Duflo isomorphisms as above by changing the correction term. Unfortunately,
this action was shown in [ABA00] to be trivial, but it nevertheless shows that there must be some
deep connection between the Lie algebra case and the geometric case of the action on Duflo iso-
morphisms.

To this end, note that the codomain U(g)g = H∗(g, U(g)) is just the center Z(g) of the Lie
algebra, and the cohomology of the sheaf of polydifferntial operators H∗(X,Dpoly(X)) of a smooth
variety X computes the Hochschild cohomology of X, which is also commonly referred to as the
"derived center". In a derived setting, we expect the center of an associative algebra object to be a
2-algebra, meaning it is equipped with two associative multiplications which are compatible up to
homotopy, instead of a commutative algebra like in the classical case.

In [Lur17, Chapter 5], J. Lurie makes this idea precise by defining the center of an algebra over
an ∞-operad. In particular, in case of the little k-disks ∞-operads E⊗

k , he uses an ∞-categorical
version of the Dunn additivity theorem to show that the higher center of an Ek-algebra is indeed an
Ek+1-algebra. The idea is now to explain the Grothendieck-Teichmüller group actions above using
B. Fresse’s result on the connection between GT and the group of homotopy automorphisms of the
rationalization of the topological little 2-disks operad, together with Lurie’s result that the center
of an associative algebra carries the structure of an E2-algebra.

In this paper we will lay the groundwork for proving this claim by connecting Lurie’s work on
higher centers with the classical results on the Hochschild cohomology of schemes. In particular, we
will argue that the Hochschild complex of any quasi-compact separated scheme should be defined
as its E1-operadic center, thereby equipping it with a canonical E2-algebra structure.

In what follows, given an ∞-category C, we let Alg(C) denote the ∞-category of homotopy as-
sociative algebras in C, and more generally AlgO(C) denotes the ∞-category of algebras over some
∞-operad O. We let D(k) be the derived ∞-category of k-modules. We denote the higher center
of an algebra object A by z(A).

We will first consider the affine case, and we will prove that we recover a solution to the classical
Deligne conjecture. This is done in section 4.

Theorem A (Theorem 4.27). Let A be an associative k-algebra. The Hochschild complex

C∗(A,A) = Homk(A
⊗∗, A)

is a center for A ∈ AlgE1
(D∞(k)). In particular, it is an element of Alg(AlgE1

(D∞(k))) ∼=
AlgE2

(D∞(k)). Its underlying Gerstenhaber algebra agrees with the classical Gerstenhaber alge-
bra structure obtained from the Braces-algebra structure.

In section 5 we recall a construction of the ∞-category Sh∞(X) of dg sheaves over a quasi-
compact separated scheme X, and examine some basic properties of the center of the structure
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sheaf as E1-algebra in this ∞-category. We then go on to show that this version of Hochschild
cochains has the desired local properties, even in the singular case. In particular, we show the
following.

Theorem B (Theorem 5.46). Let U = Spec(A) ⊆ X be an affine open. The map RΓU :
Sh∞(X) → D∞(k) is lax symmetric monoidal and hence induces a map RΓU : AlgE2

(Sh∞(X)) →
AlgE2

(D∞(k)). We have

RΓU (zE1
(OX)) ≃ zE1

(A).

In the smooth case, Kontsevich defined the Hochschild cochains to be the sheaf of polydifferential
operators, as described above. This sheaf comes with the structure of a Braces-algebra, just like in
the local case, and therefore a homotopy Gerstenhaber algebra by Tamarkin’s results. In order to
compare to the existing GT actions, we need to compare our newly obtained E2-algebra structure
to this homotopy Gerstenhaber algebra structure.

Theorem C (Theorem 5.54, Theorem ...). For a smooth quasi-compact separated scheme X of
finite type, the sheaf of polydifferential operators Dpoly(X) is a center of OX

Dpoly(X) ≃ zE1
(OX).

This equips Dpoly(X) with the structure of an E2-algebra, and after fixing a Drinfeld associa-
tor a Ger∞-algebra. The corresponding Gerstenhaber algebra in the k-linear derived 1-category
HoSh∞(X) agrees with the classical one coming from the Braces-algebra structure.

In the course of proving these results, we also obtain a couple of technical results about higher
centers. In particular, we show how to explicitly obtain the Gerstenhaber bracket of a 2-algebra
up to homotopy using Lurie’s version of the Dunn additivity theorem (see 3.18). We also show
that the 2-algebra structure on a center which is obtained as an endomorphism object indeed
corresponds to the composition product (Yoneda product) and the convolution product (see ??).
In a similar manner, we further obtain a stability result stating that the space of Gerstenhaber
algebra structures on a center is contractible, which we expect will be helpful in examining action
of the Grothendieck-Teichmueller group later on.

Related work. The connection between the Hochschild cochain complex of an associative alge-
bra A and its higher center, i.e. the universal E2-algebra acting on it, has been known already to
Kontsevich in [Kon03]. Similarly, when Deligne made his conjecture he already stated that he ex-
pected the little 2-disk algebra structure to come from the composition and convolution product via
some type of Eckmann-Hilton argument. In fact, Hu-Kriz-Voronov in [HKV06] proved a simplicial
version of Deligne’s conjecture using this idea and explicit models of the little disks operads. The
issue with both these ideas has been the difficulty to state and use them rigorously using only the
language of model categories and derived 1-categories available at the time.

After Lurie published his theory of higher centers and in particular his version of the Dunn
additivity theorem in his DAG papers, it became clear how to state the universal property identified
by Kontsevich and what the correct higher replacement of the Eckmann-Hilton argument is. In this
sense, the theory of quasi-categories and ∞-operads is essential to this paper and its related work.

In 2013, John Francis used Lurie’s Dunn additivity theorem to examine centers of stable ∞-
categories and to relate the center to the module of derivations, which was also explained already by
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Kontsevich in [Kon03]. He also defines the Hochschild cohomology of an algebra over an ∞-operad
O as the hom set of O-module maps over A from A to itself, which is closely related to Lurie’s
definition of the center.

In 2020, Iwanari [Iwa20] used this definition of Hochschild cohomology to show that pair of
Hochschild cohomology and homology of a linear category over some commutative ring spectrum
gives an algebra over the KS operad which is a generalization of the E2-operad.

In 2023, Brav and Rozenblyum [BR23] proved a cyclic version of Deligne’s conjecture (i.e.
replacing the little 2-disk operad by the framed version) also using the above described techniques.
In particular, their method also relies on Lurie’s version of Dunn additivity. However, non of the
above papers proves a comparison to the classical solutions of Deligne’s conjecture, or make any
claim about the underlying Gerstenhaber algebra structure. Similarly, the author is not aware of
any comparison of the center of a scheme to the classical sheaf of polydifferential operators.

Conventions. Throughout this paper k is a field of characteristic zero. The term "operad" is
reserved for non-reduced unital symmetric operads. Complexes are generally chain graded unless
states otherwise, and we view non-negatively graded cochain complexes as non-positive chain com-
plexes. We denote the presheaf tensor product simply by "⊗", and we decorate symbols with "(−)a"
to indicate sheafification. We try to use the term "∞-category" for ∞-categories, but if nothing
else is stated "category" refers to ∞-category and "1-category" refers to ordinary categories.

Acknowledgments. This work was supported by NSF Grant DMS-2305407. I would like to
thank my thesis advisor, Chris Rogers, for proposing the problem and providing essential guidance.
I would also like to thank Nick Rozenblyum for invaluable comments on J. Lurie’s proof of the
Dunn Additivity Theorem and Dennis Borisov for helpful discussions on dg sheaves.

2 Preliminaries
We follow J. Lurie’s formalism for ∞-operads as developed in [Lur17]. In particular, an ∞-operad
is a morphism p : O⊗ → Fin∗ of ∞-categories satisfying a list of conditions making O⊗ into an ∞-
category of operators. We will freely use notation from [Lur17] regarding ∞-operads and algebras
and modules over these. We will also give a quick overview of the history of Deligne’s conjecture
on Hochschild cochains.

2.1 Morphism objects and operadic centers
We review Lurie’s theory of morphism objects and operadic centers. The definitions we use can be
found in [Lur17, Section 4.2, 4.7 and 5.3].

Definition 2.1. Let a and m be the two colors of the operad LM. Let q : C⊗ → LM⊗ be a
coCartesian fibration of ∞-operads. We then say that q exhibits the ∞-category M := Cm as left
tensored over the monoidal ∞-category C⊗a := C⊗ ×LM⊗ Assoc⊗. In particular, q determines a
tensoring

⊗ : Ca ×M→M

well-defined up to homotopy that is compatible with the monoidal structure on Ca up to homotopy.
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Definition 2.2. Let q : C⊗ → LM⊗ exhibit M as left tensored over C⊗a . Then we denote by

LMod(M) = Alg/LM⊗(C)

the ∞-category of pairs of associative algebras in C⊗a and left modules.

In particular, any monoidal ∞-category is canonically left tensored over itself.

Recall that for ordinary categories, internal homs and more generally enrichments are right
adjoint to a tensoring. Similarly, one makes the following definition.

Definition 2.3. Let C⊗ → LM⊗ be a coCartesian fibration of ∞-operads exhibiting M as left
tensored over C⊗a . If M,N ∈ M, a morphism object for M and N is an object Mor(M,N) ∈ Ca
together with a map ρ ∈ MapM(C ⊗M,N) such that for each C ∈ Ca, post-composition with α
induces a homotopy equivalence

MapCa
(C,Mor(M,N))

≃−→ MapM(C ⊗M,N). (1)

We call M enriched over C⊗a if all the morphisms objects exist.

The following result shows that we can think of morphism objects as the classifying object of
action maps A⊗M → N with A ∈ Ca.

Proposition 2.4. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Let M,N ∈ M.
Then an object Mor(M,N) ∈ Ca together with a map α : Mor(M,N)⊗M → N is a morphism object
of M and N if and only if (Mor(M,N), α) ∈ Ca ×MM/N with map given by −⊗M : Ca →M is
final.

Proof. Note that M/N →M is a right fibration, and since these are stable under base change, so
is f : Ca×MM/N → Ca. Consider the functor F : Copa → An classifying f . Then by [Lur12, lemma
2.2.2.4], its underlying functor hF : hCopa → H can be recovered as follows. On objects, an object
X ∈ Ca is sent to its fiber

(Ca ×MM/N )×Ca
{X} ≃ {X ⊗M} ×MM/N ≃ MapM(X ⊗M,N).

Given a morphism e : Y → X ∈ MorCa
(Y,X) in hCa, the induced map between the fibers comes

from solving the lifting problem

{1} ×MapM(X ⊗M,N) Ca ×MM/N

∆1 ×MapM(X ⊗M,N) Ca

∆1

f

e

,

and restricting the lift to {0} × MapM(X ⊗M,N). Since f is a pullback of the right fibration
M/N →M, the lift above is induced by the solution to
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{1} ×MapM(X ⊗M,N) M/N

∆1 ×MapM(X ⊗M,N) M
e⊗idM

.

But the restriction of this lift to {0}×MapM(X⊗M,N) is given by pre composition with e⊗ idM .
Therefore, we see that hF is given by the composition of − ⊗M and MapM(−, N). Recall that
by [Lur12, prop. 4.4.4.5], an object (X,X ⊗M η−→ N) is final in Ca×MM/N if and only if the pair
(X, η ∈ hF (X)) represents hF . Then we are done after noting that by definition, (Mor(M,N), α)
is a morphism object exactly if it represents the functor X 7→ MapM(X ⊗M,N).

Now put N = M . Then by the above proposition, End(M) := Mor(M,M) ∈ Ca classifies
actions of elements of Ca on M . Note however that these are plain actions A ⊗M → M that do
not require A to be an algebra object and do not require M to satisfy the axioms of a module over
A. However, we do expect End(M) to carry the structure of an associative algebra coming from
composition, and M to be a module over it.

Definition 2.5. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Define the endo-
morphism ∞-catetgory of M ∈M as

Ca[M ] = Ca ×MM/M .

We show in appendix A that Ca[M ] agrees with Lurie’s endomorphism∞-category as in [Lur17,
Definition 4.7.1.1]. In particular, it admits the structure of a monoidal ∞-category with the tensor
product given up to homotopy by

(A,A⊗M →M)⊗ (B,B ⊗M →M) = (A⊗B,A⊗B ⊗M → A⊗M →M).

Then by [Lur17, Corollar 3.2.2.5] with K = ∅ and O⊗ = Assoc⊗ we automatically get the following.

Corollary 2.6. Assume the ∞-category Ca[M ] has a final object (End(M), α). Then (End(M), α)
can be promoted to an object of Alg(Ca[M ]) in an essentially unique way. We denote this object
again by End(M). Note that End(M) is automatically final in Alg(Ca[M ]).

Up to homotopy, the tensor product of End(M) with itself is given by the action

(End(M)⊗ End(M))⊗M ≃ End(M)⊗ (End(M)⊗M)
idEnd(M)⊗α−−−−−−−−→ End(M)⊗M α−→M,

and hence the algebra structure on End(M) has a multiplication making the following diagram
commute

End(M)⊗M

(End(M)⊗ End(M))⊗M M

.

Further, M is automatically a module over the algebra End(M), and this action End(M)⊗M →M
is universal among algebra actions on M as a module.
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Corollary 2.7. In the above situation, we have an equivalence of ∞-categories

Alg(Ca[M ])→ LMod(M)×M {M}.

Proof. This follows directly from [Lur17, Theorem 4.7.1.34] and the results of chapter 4.1.3 in
[Lur17].

There are a variety of interesting situations in which such an (end)omorphism object fails to exist,
in particular if we consider ∞-categories arising as categories of algebra objects. The archetypal
example is the following.

Example 2.8. Let k be a field and consider the (symmetric) monoidal category Algk as left tensored
over itself. Let A ∈ C be some k-algebra. Then for any endomorphism φ ∈ HomC(M,M), the pair
(k, k ⊗M ∼= M

φ−→ M) is an object of C[M ]. Therefore, if (A, η) ∈ C[M ] were a final object, then
η ◦ (uA ⊗ idM ) = φ for any endomorphism φ :M →M . But this not possible unless M = k is the
trivial k-algebra. This was to be expected, since we know that the monoidal category of k-algebras
is not closed.

The solution to this problem is to relax our expectations on the morphism object. In the above
discussion, we start out requiring that Mor(M,N) classify all (plain) actions C ⊗M → N , and
then in the case N =M get for free that End(M) also classifies algebra actions of algebras on M .
Instead, we now consider objects that only classify the algebra actions.

Definition 2.9. Let C⊗ → LM⊗ be a coCartesian fibraiton of ∞-operads, and let M ∈ M. A
center Z(M) of M is a final object of LMod(M) ×M {M}. We generally identify Z(M) with its
image in Alg(Ca).

Clearly if M admits an endomorphism object, then this endomorphism object is also a center of
M . The converse does not hold: The category Alg(Ca[M ]) might have final objects although Ca[M ]
does not.

Example 2.10 (Example 2.8 continued). The ordinary center Z(A) of an associative k-algebra
A is indeed the universal algebra object acting on A. To see this, note first that the center is
a commutative algebra, and therefore an algebra object in the category of associative algebras.
It comes with a natural action on A given by multiplication in A. Now suppose that B is a
commutative algebra with action η : B ⊗ A→ A making A into a B-module. Then the restriction
of η to A yields the identity on A and η must be an algebra morphism. Hence

η(b⊗ a) = η(b⊗ 1) · η(1⊗ a) = η(b⊗ 1) · a and
η(b⊗ a) = η(1⊗ a) · η(b⊗ 1) = a · η(b⊗ 1),

showing that η sends B to Z(A).

There also is a relative version of the center.

Definition 2.11. Let C⊗ → LM⊗ be a coCartesian fibration of ∞-operads, let 1 denote the
monoidal unit of C⊗a , and let f : M → N be a morphism in M. A centralizer z(f) of f is a final
object in

Act(f) := (Ca)1/ ×MM/
MM//N .

We generally identify z(f) with its image in Ca.
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The objects of this ∞-category are given by commuting triangles in M

C ⊗M

1⊗M N

.

In particular, the centralizer is equipped with an action z(f)⊗M → N making the above diagram
commute.

Lemma 2.12. Let f : M → N be a morphism in M. Let M ∈ LMod1(M) be a lift of M as
module over the trivial algebra. Let C⊗

MLM/
→ LM⊗ be defined as in [Lur17, Definition 4.2.1.28].

Then centralizers of f can be identified with morphism objects

MorMM/
(idM , f) ∈ (Ca)1/.

Proof. Let C′⊗ := C⊗
MLM

. By proposition 2.4, it suffices to show that we have an equivalence of
∞-categories Act(f) ≃ (C′)a ×M′M′

/f . But we have (C′)a ×M′M′
/f ≃ (Ca)1/ ×MM/

(MM/)/N , so
this is clear.

We would like to see that these notions are compatible, in the sense that the centralizer of an
identity morphism recovers the center.

Proposition 2.13 (Proposition 5.3.1.8 [Lur17]). Let M ∈M, and suppose there exists a centralizer
z(idM ) ∈ Ca. Then there exists a center z(M) ∈ Alg(Ca). Further, a lift of M to a module over an
algebra A ∈ Alg(Ca) exhibits A as a center of M if and only if the action map A⊗M →M exhibits
A as a centralizer of idM .

Proof. Recall that the centralizer of the identity is a morphism object MorMM/
(idM , idM ). By

corollary 2.6, this morphism object admits an essentially unique structure of an algebra object in
(Ca)1/, and idM lifts to a module over this algebra structure. In particular, z(idM ) admits a canonical
algebra structure making it into the center of idM in MM/. Now use [Lur17, Lemma 5.3.1.10] to
see that the forgetful functor LMod(MM/) ×MM/

{idM} → LMod(M) ×M {M} preserves final
objects.

2.2 Tensor product of ∞-operads
The Boardman-Vogt tensor product on ordinary operads is designed such that algebras over the
tensor product P ⊠BV O are given by P-algebras in the category of O-algebras. We briefly review
the corresponding construction for ∞-operads.

We want to capture bilinearity of a map between ∞-operads. To this end, define a functor
∧ : Fin∗×Fin∗ → Fin∗ by sending (⟨m⟩, ⟨n⟩) to the pointed set (⟨m⟩◦×⟨n⟩◦)+ ∼= ⟨mn⟩, where the
isomorphism is given by the lexicographic ordering, and by sending (f : ⟨m⟩ → ⟨n⟩, g : ⟨m′⟩ → ⟨n′⟩)
to

⟨mm′⟩
∼=−→ (⟨m⟩◦ × ⟨m′⟩◦)+

f×g−−−→ (⟨n⟩◦ × ⟨n′⟩◦)+
∼=−→ ⟨nn′⟩.

We call a map of simplicial sets F : O⊗ × O′⊗ → O′′⊗ a bifunctor of ∞-operads if the diagram
below commutes, and if F sends pairs of inert maps to an inert map in O′′⊗.
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O⊗ ×O′⊗ O′′⊗

Fin∗×Fin∗ Fin∗

F

∧

In particular, define Bil(O⊗,O′⊗;O′′⊗) to be the full subcategory of FunFin∗(O⊗ × O′⊗,O′′⊗)
spanned by the bifunctors.

We claim that for a symmetric monoidal ∞-category C⊗, the ∞-category of bifunctors from
O⊗ × O′⊗ to C⊗ is equivalent to the appropriate ∞-category of O-algebras in the symmetric
monoidal ∞-category AlgO′(C)⊗. To this end, recall the symmetric monoidal structure on the
∞-category AlgO′(C). This is supposed to capture the fact that the tensor product in C descends
to a tensor product of O′-algebras in C. We define a map of simplicial sets AlgO′(C)⊗ → Fin∗ by
the following universal property. If K → Fin∗ is a map of simplicial sets, then there is a natural
bijection between HomFin∗(K,AlgO′(C)⊗) and the set of diagrams

K ×O′⊗ C⊗

Fin∗×Fin∗ Fin∗

F

∧

such that for v ∈ K a vertex and f an inert morphisms in O′⊗, the map F (s0(v), f) is inert in C⊗. In
particular, the fiber AlgO′(C)⊗⟨1⟩ over ⟨1⟩ ∈ Fin∗ is given by the full subcategory of FunFin∗(O′⊗, C⊗)
of maps that preserve inert morphisms, and hence can be identified with the ∞-category AlgO′(C).
Fixing ⟨n⟩ ∈ Fin∗, we get a new map O′⊗ → Fin∗ given by the following diagram

O′⊗ Fin∗

∆0 ×O′⊗ Fin∗×Fin∗

∼= ∧

were the lower horizontal map picks out ⟨n⟩ ∈ Fin∗. We can informally describe this map as
⟨n⟩ ∧ p, if p : O′⊗ → Fin∗ is the map making O′⊗ an ∞-operad. It particular, it sends X ∈ O⊗

⟨m⟩
to ⟨nm⟩ = ⟨n⟩ ∧ p(X) and f : X → Y to id⟨n⟩ ∧ p(f). Hence the fiber AlgO′(C)⊗⟨n⟩ is given by
the full subcategory of FunFin∗(O′⊗, C⊗) sending inert maps to inert maps, where now the map
O′⊗ → Fin∗ is given by this new map ⟨n⟩ ∧ p. If F : O′⊗ → C⊗ ∈ AlgO′(C)⊗⟨n⟩, and X ∈ O′, then
F (X) ∈ C⊗⟨n⟩ can be described by a tuple (F (X)1, . . . , F (X)n) ∈ Cn. This argument shows that
F can indeed be identified with a tuple (F1, . . . , Fn) ∈ AlgO′(C)n. By [Lur17, 3.2.4.3] the map
q′ : AlgO′(C)⊗ → Fin∗ is a coCartesian fibration and a morphism f in AlgO′(C)⊗ is q′-coCartesian
if and only if for every X ∈ O′, the image f(X) is q-coCartesian in C⊗. That means that AlgO′(C)⊗
is again a symmetric monoidal ∞-category. For X ∈ O′, the evaulation map AlgO′(C)⊗ → C⊗ is a
morphism of ∞-operads, hence a lax symmetric monoidal functor, and we see that the symmetric
monoidal structure on AlgO′(C)⊗ is given by the pointwise tensor product on C⊗.

Now an O-algebra in AlgO′(C)⊗ is given by a morphism of simplicial sets O⊗ → AlgO′(C)⊗ over
Fin∗ sending inert morphisms to inert morphisms. In particular, by the construction of AlgO′(C)⊗,
such an O-algebra is given by a diagram
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O⊗ ×O′⊗ C⊗

Fin∗×Fin∗ Fin∗
∧

such that for every X ∈ O⊗ and every inert map f in O′⊗, the tuple (idX , f) is sent to an inert map
in C⊗. The condition that inert morphisms in O⊗ are sent to inert maps in AlgO′(C)⊗ translates
to the fact that for inert maps f in O⊗ and X ∈ O′, the tuple (f, idX) is sent to an inert map in
C⊗; and together those two conditions say exactly that tuples of inert maps are sent to an inert
map. But this is clearly the same as a bifunctor O⊗ ×O′⊗ → C⊗.

We now say that a bifunctor F : O⊗×O′⊗ → O′′⊗ exhibits O′′⊗ as a tensor product of O⊗ and
O′⊗ if for every ∞-operad C⊗, precomposition with F determines an equivalence of ∞-categories

AlgO′′(C)→ Bil(O⊗,O′⊗; C⊗).

In particular, in this case, if C⊗ is a symmetric monoidal ∞-category, the above discussion shows
that we have an equivalence of ∞-categories

AlgO′′(C)→ AlgO(AlgO′(C)).

In this sense, the tensor product of∞-operads is a derived version of the Bordmann-Vogt tensor
products of operads.

2.3 The little cubes operads
Consider the topological (one-colored) operad ETk with ETk (n) = Rect(□k×{1, . . . , n},□k) the space
of rectilinear embeddings. Let ET,⊗k denote its category of operators, and consider the corresponding
simplicial category Sing•(E

T,⊗
k ). Taking the homotopy coherent nerve, we obtain an ∞-category

E⊗
k , which is an ∞-operad since the underlying simplicial operad is fibrant. In particular, objects

in E⊗
k are given by ⟨n⟩ for n ∈ N, morphisms are given by points in

MapE⊗
k
(⟨n⟩, ⟨m⟩) =

∐
f :⟨n⟩→⟨m⟩

∏
j∈⟨m⟩◦

Rect(□k × {1, . . . , n},□k),

and to give a 2-simplex with boundary as shown below is equivalent to giving a path from F ◦ E
to G in MapE⊗

k
(⟨m⟩, ⟨k⟩).

⟨m⟩

⟨n⟩ ⟨k⟩

F

G

E

For k = 1 we get the E⊗
1 -operad, which is equivalent to the ∞-operad Assoc⊗ and governs

homotopy associative algebras. For k = 2, we instead recover the ∞-operadic version of the little
2-disks operad D2. In particular, an element in MulE1

(⟨n⟩, ⟨1⟩) is given by a rectangular embedding
of n copies of the interval [0, 1] into the interval [0, 1]. An element in MulE2

(⟨n⟩, ⟨1⟩) is given by a

11



rectangular embedding of n copies of the square [0, 1]× [0, 1] into the square [0, 1]× [0, 1].

Note that for k ≥ 0, we have a homotopy equivalence MulEk
(⟨2⟩, ⟨1⟩) ≃ Sk−1 given by drawing

a line between the middle points of the two copies of [0, 1]k inside [0, 1]k with direction given by
going from the label 2 to the label 1, and finding the intersection of this line with the boundary
of [0, 1]k in the positive direction. Then one can deform the boundary of [0, 1]k into an Sk−1 and
get the corresponding point there. We frequently use this homotopy equivalence as a convenient
method to label morphisms in the little cubes operads. In particular, fix a homotopy inverse
S0 → MulE1

(⟨2⟩, ⟨1⟩) and a homotopy inverse S1 → MulE2
(⟨2⟩, ⟨1⟩). Then we get two elements in

MulE1
(⟨2⟩, ⟨1⟩) named µ0 and µπ, and for every t ∈ [0, 2π) we get an element µt ∈ MulE2

(⟨2⟩, ⟨1⟩).

12 0

Figure 1: The element µ0 ∈ MulE2
(⟨2⟩, ⟨1⟩).

Recall that 2-morphisms in E⊗
k are given by paths in the relevant hom-spaces. There are two

such 2-morphisms in E⊗
1 that will play a special role in the subsequent discussion. On the one hand,

for each t ∈ [0, 2π), there is a 2-morphisms σt ∈ MapE⊗
2
(⟨2⟩, ⟨1⟩)1 with boundary given by t and

t+ π(mod 2π) that is represented by the braid

1

1 2

2

On the other hand, for each t ∈ [0, 2π) there is a non-trivial 2-morphism γt ∈ MapE⊗
2
(⟨2⟩, ⟨1⟩)1

between t and itself represented by the composition of braids

12



1

12

2

The classical Eckmann-Hilton argument shows that in the 1-categorical case algebra objects
in the category of algebra objects yield commutative algebra objects. In particular, if (A, ·) is an
algebra in a symmetric monoidal category C and ∗ : (A, ·) ⊗ (A, ·) → (A, ·) endows (A, ·) with the
structure of an algebra object in the category of algebras in C, then both operations · and ∗ agree
and they are commutative. In this sense, an E1-algebra inside the symmetric monoidal category
of E1-algebras in C is the same as a commutative algebra inside C, which in the 1-categorical case
is the same as an E2-algebra. In fact, this pattern continues for all the little k-cubes operads, as
was shows by Dunn for topological operads and later by Lurie for ∞-operads. To explain this, for
k, k′ ≥ 0, define a topological functor

ρ : ET,⊗k × ET,⊗k′ → ET,⊗k+k′

given on objects by ρ(⟨m⟩, ⟨n⟩) = ⟨m⟩ ∧ ⟨n⟩, and sending a pair of morphisms (α, {fj : □k ×
α−1({j})→ □k}j∈⟨n⟩◦) and (β, {gi : □k

′ × β−1({i})→ □k
′}i∈⟨n′⟩◦) to

(α ∧ β, {fj × gi : □k+k
′
× α−1({j})× β−1({i})→ □k+k

′
}j∈⟨n⟩◦,i∈⟨n′⟩◦).

In order for this to make sense, we note that viewing a tuple (j, i) ∈ ⟨n⟩◦ × ⟨n′⟩◦ as an element
of ⟨nn′⟩◦, we have (α ∧ β)−1((j, i)) = α−1({j)} × β−1({i}). This descends to a simplicial functor,
and then taking the homotopy coherent nerve to a map of ∞-categories ρ : E⊗

k × E⊗
k′ → E⊗

k+k′ . By
construction, the diagram

E⊗
k × E⊗

k′ E⊗
k+k′

Fin∗×Fin∗ Fin∗

ρ

∧

commutes, and clearly ρ sends pairs of inert morphisms to inert morphisms. Thus, ρ is a bifunctor
of ∞-operads.

Theorem 2.14 (Dunn additivity, Theorem 5.1.2.2 [Lur17]). The bifunctor ρ : E⊗
k × E⊗

k′ → E⊗
k+k′

exhibits the ∞-operad E⊗
k+k′ as a tensor product of E⊗

k and E⊗
k′ .
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This implies that for every symmetric monoidal ∞-category C⊗, precomposition with ρ deter-
mines an equivalence of ∞-categories

AlgEk+k′ (C)→ AlgEk
(AlgEk′ (C)).

In particular, this is essentially surjective, meaning that for every Ek-algebra A in Ek′ -algebras in
C⊗, there exists a Ek+k′ -algebra Ã in C⊗ such that Ã ◦ ρ is equivalent to A in the ∞-category
AlgEk

(AlgEk′ (C)).

2.4 Deligne’s conjecture on Hochschild cochains
Let A be an associative k-algebra. The category of left modules over the algebra A ⊗ Aop is
isomorphic to the category of A-bimodules. This is a monoidal category with tensor unit given by
A viewed as a bimodule over itself.

Definition 2.15. The Hochschild complex of A with coefficients in an A-bimodule M is given by

C∗(A,M) = RHomA⊗Aop(A,M).

Clearly this is well-defined up to quasi-isomorphism. The Hochschild cohomology HH∗(A,M) of
A with coefficients in M is given by the cohomology of this complex.

We will be interested in the case M = A. In this case, the Hochschild cohomology of A encodes
the deformation theory of A as a bimodule over itself. Note that

HH0(A,A) = HomA⊗Aop(A,A) = Z(A).

For that reason, Hochschild cohomology is often called the "derived center" of A. In the litera-
ture, the Hochschild cochain complex of A is often implicitly taken to be HomA⊗Aop(B∗(A), A) ∼=
Homk(A

⊗∗, A) where B∗(A) is the Bar resolution.

In 1962, M. Gerstenhaber noticed that Hochschild cohomology is equipped with a shifted Lie
bracket [−,−]G and a commutative product ⌣ such that [f,−]G is a derivation for the product.
Such a structure is now called a Gerstenhaber algebra. We denote the operad governing Gersten-
haber algebras by Ger. In 1976, F. Cohen realzied that the Gerstenhaber operad is the homology
of the topological operad of little 2-disks D2. In particular, if C∗ is an algebra over C∗(D2), then
H∗(C) is an algebra over Ger. This inspired P. Deligne conjecture in a 1993 letter that in fact
the Hochschild cochain complex of an associative algebra A is an algebra over the chains on little
2-disks operad in such a way that the induced Gerstenhaber algebra structure on cohomology re-
covers Gerstenhaber’s original one.

Multiple different proofs have been given that this is in fact true, see for example [Tam98],
[Vor00], [MS02]. In particular, D. Tamarkin in [Tam98] constructed a map ΨT : Ger∞ → Braces
from the operad of homotopy Gerstenhaber algebras to the braces-operad, and also proved a formal-
ity result for the Gerstenhaber operad. Since C∗(A,A) is canonically a braces-algebra, this solves
Deligne’s conjecture. Notably, Tamarkin’s map ΨT depends on the choice of a Drinfeld associator.

In his letter, Deligne conjectured that the C∗(D2)-algebra structure on the cochain level should
come from the two multiplications on RHomA⊗Aop(A,A) induced by A being a monoidal unit. In
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particular, we have an inner multiplication coming from the bialgebra structure of A in the bimodule
category. Let End(A) := HomA⊗Aop(A,A). Then we get

End(A)⊗A End(A)⊗A A
∼=−→ End(A)⊗A End(A)⊗A A⊗A A

∼= End(A)⊗A A⊗A End(A)⊗A A→ A⊗A A
∼=−→ A

inducing a multiplication End(A) ⊗A End(A) → End(A). We also have an outer multiplication,
the Yoneda product, induced by composition. This approach to proving the Deligne conjecture was
examined in [HKV06], but is very difficult to link to existing definitions due to the incompatibility
of the Boardman-Vogt tensor product with homotopical structure. In this paper, we will follow
a similar approach to Hu-Kriz-Voronov, but we will use the language of ∞-operads. The main
advantage of this is that we have access to a precise Dunn additivity statement 2.14. This makes it
possible to get an actual C∗(E2)-algebra structure from two compatible A∞-algebra structures, and
to give precise meaning to the intuition that the Gerstenhaber bracket corresponds to the chain
homotopy witnessing the compatibility of the two multiplications.

2.5 Polydifferential operators and formality morphisms
Let X be a separated scheme over k. Then the Hochschild cohomology of X should be a global
version of the above definitions, such that if X = Spec(A) we recover definition 2.15. Historically,
there have been multiple proposed definitions, for example by Grothendieck-Loday, Gerstenhaber-
Schack and Swan. The perhaps most straight-forward generalization from the affine case was given
by Swan, who defined the Hochschild cohomology of X to be

HH∗
S(X) = Ext∗OX×kX

(∆∗OX ,∆∗OX).

Unfortunately, this does not carry a Gerstenhaber bracket. For the case that X is smooth, Kont-
sevich gave an alternative definition, which does carry the structure of a Gerstenhaber algebra. He
defined the complex of polydifferential operators on a regular algebra A to be the subcomplex

Dpoly(A) ⊆ C∗(A,A)

of maps f : A⊗n → A that are differential operators in each variable separately. These glue together
to yield the sheaf of polydifferential operators on X

Dpoly(X)(Spec(A)) = Dpoly(A).

Then the Hochschild cohomology of X is the hypercohomology of the sheaf of polydifferential
operators,

HH∗
K(X) = H∗(X,Dpoly).

Since Dpoly(X) is a sheaf of homotopy Gerstenhaber algebras by Tamarkin’s solution of the Deligne
conjecture, the hypercohomology inherits a Gerstenhaber algebra structure.

Associated to a smooth scheme X is also the sheaf of polyvector fields

Tpoly(X) = ΛTX [−1],
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where TX is the tangent sheaf of X. This also carries the structure of a Gerstenhaber algebra with
the bracket given by the Schouten-Nijenhuis bracket. In particular, its hypercohomology is also a
Gerstenhaber algebra. The Hochschild-Kostant-Rosenberg theorem provides a canonical embedding

Tpoly(X)
HKR−−−→ Dpoly(X)

which is a quasi-isomorpism of complexes of sheaves. In case X is an affine space, Tamarkin’s
algebraic version of Kontsevich’s formality theorem states that the HKR map lifts to a Ger∞-quasi-
isomorpism, and in particular it induces an isomorphism of Gerstenhaber algebras on hypercoho-
mology. For general X however, Calaque and Van den Bergh showed in [CVdB10] that the HKR
map needs to be corrected by the square root of the Todd class of X to yield an isomorphism of
Gerstenhaber algebras

H∗(X, Tpoly(X))
HKR◦(Td(X)

1
2 ∧−)−−−−−−−−−−−−→ HH∗

K(X).

3 The bracket operation on 2-algebras

3.1 The bracket operation of an E2-algebra
Consider the topological operad E2 of little 2-disks and its corresponding dg-operad C∗(E2). If
C∗(E2)→ End(A) is an algebra in the category of chain complexes over k, we in particular have an
action of the 2-ary operation space

C∗(E2(2))⊗A⊗2 → A,

and recalling that E2(2) ≃ S1, taking homology yields a map

H∗(S
1)⊗H∗(A)

⊗2 → H∗(A).

Since H∗(S
1) ∼= Z[p]⊕Z[γ] for some choice of basepoint p ∈ S1 and generating loop γ : [0, 1]→ S1,

this yields two 2-ary operations on H∗(A); one of degree zero induced by [p]

⌣: H∗(A)⊗H∗(A)→ H∗(A)

and one of degree one induced by [γ]

[·, ·] : H∗(A)⊗H∗(A)→ H∗(A)[−1].

These two operations make H∗(A) into a Gerstenhaber algebra. This discussion in particular shows
that the bracket operation is induced by the chain level operation A⊗2 → A corresponding to any
choice of generating loop γ of the homology of S1. We can hence generalize this notion to a general
symmetric monoidal ∞-category.

Definition 3.16. Let C⊗ be a symmetric monoidal ∞-category and let A : E⊗
2 → C⊗ be an E2-

algebra in C⊗. Then we call the image under A of γt ∈ MapE⊗
2
(⟨2⟩, ⟨1⟩)1 the bracket operation of

A at mt.
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Let A : E⊗
2 → Ndg(C

◦)⊗ be an E2-algebra in a symmetric monoidal dg model category. Then
we get an induced map

E2(2) = MapαE⊗
2
(⟨2⟩, ⟨1⟩)→ MapNdg(C◦)⊗(A(⟨2⟩), A(⟨1⟩)).

Let A = A(⟨1⟩). Then we have a homotopy equivalence

MapNdg(C◦)⊗(A(⟨2⟩), A(⟨1⟩)) ≃ MapNdg(C◦)(A
⊗2, A).

Hence we get a map (well-defined up to homotopy)

E2(2)→ MapNdg(C◦)(A
⊗2, A) ≃ DKτ≥0 MapC(A

⊗2, A),

and therefore taking homology we get maps

(Ger(2))n ∼= Hn(E2(2))→ HomD(C)(A
⊗2, A[n]).

More generally, this procedure yields a Gerstenhaber algebra structure on A in the derived categor
of C. In particular, we see that the bracket of this Gerstenhaber algebra is indeed given by the
image of γ0.

3.2 The bracket operation of a 2-algebra
If now A : E⊗

1 ×E⊗
1 → C⊗ is a 2-algebra in C⊗, the Dunn additivity theorem tells us that there exists

an E2-algebra Ã : E⊗
2 → C⊗ such that the restriction of Ã along ρ : E⊗

1 × E⊗
1 → E⊗

2 is equivalent
to A in the category of bifunctors. Fixing such an E⊗

2 -algebra, we can ask whether it is possible to
express the bracket operations Ã(γt) in terms of the original 2-algebra A.

Denote by A ∈ C the image A(⟨1⟩, ⟨1⟩), and let µ ∈ HomE⊗
1
(⟨2⟩, ⟨1⟩)0 be the element

12
.

We fix coCartesian lifts of inert maps in E⊗
1 by using the correct enumerations of the full intervals.

By abuse of notation, we denote those lifts by the inert map in Fin∗ they lift. The key observation
in expressing the bracket operations in terms of the orignal 2-algebra is given by the following
theorem.

Theorem 3.17. The images under A of the 2-simplices in E⊗
1 × E⊗

1

(⟨2⟩, ⟨2⟩) (⟨2⟩, ⟨1⟩)

(⟨1⟩, ⟨2⟩) (⟨1⟩, ⟨1⟩)

(µ,id⟨2⟩)

(id⟨2⟩,µ)

(µ,id⟨1⟩)

(id⟨1⟩,µ)

(⟨1⟩, ⟨2⟩)

(⟨1⟩, ⟨4⟩) (⟨1⟩, ⟨2⟩)

(id⟨1⟩,(2,3))
(id⟨1⟩,id⟨2⟩)

(id⟨1⟩,(µ,µ))
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(⟨2⟩, ⟨1⟩) (⟨4⟩, ⟨1⟩)

(⟨2⟩, ⟨1⟩)
(τ,id⟨1⟩)

((2,3),id⟨1⟩)

((µ,µ),id⟨1⟩)

induce a 2-simplex in C⊗ up to homotopy

(A,A)

(A,A,A,A) (A,A)

(A,A) A

ι2,3

id(A,A)

τ
(m1,m1)◦τ2,3

(m2,m2)

m1

m2

whose homotopy class is identified under the isomorphism Ã ◦ ρ ≃ A with the image under Ã of the
half twist between t = 0 and t = π in HomE⊗

2
(⟨2⟩, ⟨1⟩).

Proof. First check that the 2-simplices in E⊗
1 × E⊗

1 indeed induce composable 2-simples in C⊗ with
the depicted boundaries. We immediately get diagrams

(A,A,A,A) (A,A)

A(⟨2⟩, ⟨2⟩) A(⟨2⟩, ⟨1⟩)

(A,A) A

A(⟨1⟩, ⟨2⟩) A(⟨1⟩, ⟨1⟩)

≃ ≃

≃ ≃

(A,A)

A(⟨1⟩, ⟨2⟩) (A,A,A,A) (A,A)

A(⟨1⟩, ⟨4⟩) A(⟨1⟩, ⟨2⟩)

≃

≃ ≃

(A,A) (A,A,A,A)

A(⟨2⟩, ⟨1⟩) A(⟨4⟩, ⟨1⟩) (A,A)

A(⟨2⟩, ⟨1⟩)

≃ ≃

≃
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so it suffices to show that these fit together into the depicted 2-simplex. To this end we check that
the maps (A,A,A,A)→ (A,A) in the square agree with the respective maps (A,A,A,A)→ (A,A)
in the triangles, and similarly for the two maps (A,A)→ (A,A,A,A) in the different triangles. To
this end note that it suffices to show that each of those pairs of maps agrees after postcomposition

with coCartesian lifts of the ρi. Consider first the maps induced by (⟨2⟩, ⟨2⟩)
id⟨2⟩,µ−−−−→ (⟨2⟩, ⟨1⟩) and

(⟨1⟩, ⟨4⟩)
id⟨1⟩,(µ,µ)−−−−−−−→ (⟨1⟩, ⟨2⟩). We have a factorization

(⟨2⟩, ⟨2⟩) (⟨2⟩, ⟨1⟩) (⟨1⟩, ⟨1⟩)

(⟨1⟩, ⟨2⟩)

id,µ

ρi,id

ρi,id

id,µ

in E⊗
1 × E⊗

1 , where the lower lhs map lies over the inert map 1, 2, ∗, ∗ : ⟨4⟩ → ⟨2⟩ if i = 1 and over
the inert map ∗, ∗, 1, 2 if i = 2. Since inert pairs are sent to inert maps by A, this diagram maps to

(A,A,A,A) (A,A) A

(A,A)

A(id,µ) ρi

m2
.

where (A,A,A,A)→ (A,A) is an inert lift. Now on the other hand, we also have a factorization

(⟨1⟩, ⟨4⟩) (⟨1⟩, ⟨2⟩) (⟨1⟩, ⟨1⟩)

(⟨1⟩, ⟨2⟩)

id,(µ,µ)

id,fi

id,ρi

id,µ

where fi is 1, 2, ∗, ∗ if i = 1 and ∗, ∗, 1, 2 if i = 2. This again is sent by A to

(A,A,A,A) (A,A) A

(A,A)

A(id,(µ,µ)) ρi

m2
,

showing that our two maps (A,A,A,A) → (A,A) indeed agree up to homotopy. An analogous
analysis can be carried out with the other two maps (A,A,A,A)→ (A,A). For the two inclusions
(⟨1⟩, ⟨2⟩)→ (⟨1⟩, ⟨4⟩) and (⟨2⟩, ⟨1⟩)→ (⟨4⟩, ⟨1⟩), it suffices to show that the two unit maps coming
from (⟨1⟩, ⟨0⟩)→ (⟨1⟩, ⟨1⟩) and (⟨0⟩, ⟨1⟩)→ (⟨1⟩, ⟨1⟩) agree. To this end, note that both (⟨0⟩, ⟨0⟩)→
(⟨1⟩, ⟨0⟩) and (⟨0⟩, ⟨0⟩)→ (⟨0⟩, ⟨1⟩) are sent to the identity on the empty tuple by A, up to homotopy,
since C⊗⟨0⟩ is contractible. Then the image of the diagram
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(⟨1⟩, ⟨0⟩)

(⟨0⟩, ⟨0⟩) (⟨1⟩, ⟨1⟩)

(⟨0⟩, ⟨1⟩)

under A shows that the two unit maps are homotopic.

We now show that the depicted 2-simplex in C⊗ indeed corresponds to the image of the half
twist under Ã. To this end, examine the images of the three 2-simplices in E⊗

1 × E⊗
1 under ρ :

E⊗
1 × E⊗

1 → E⊗
2 . We get
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Note that the paths forming the fillings of the two triangles in the square diagram are both the
constant path at

,

while the fillings of the triangle diagrams are given by continuously enlarging the respective rect-
angles. Composing those in the simplicial category E∆,⊗

2 we hence get the half twist

.

Applying Ã to the above simplices induces a diagram of 2-simplices in C⊗

(Ã, Ã)

(Ã, Ã, Ã, Ã) (Ã, Ã)

(Ã, Ã) Ã

and by construction the isomorphism between Ã ◦ ρ and A identifies this diagram with the one in
the statement. Since maps between ∞-categories respect composition, this proves the claim.

We can repeat the analysis in this theorem for the other parts of the classical Eckmann-Hilton
argument. In particular, we get representations of the image under Ã of all four different parts of
the double twist in terms of compositions of 2-simplices in the image of A. As a corollary, we obtain

Corollary 3.18. The homotopy class of the bracket on Ã at t = 0 can be produced as a composition
of the following 2-simplices in C⊗
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(A,A)

(A,A,A,A) (A,A)

(A,A) A

ι2,3

id

τ
(m1,m1)◦τ2,3

(m2,m2)

m1

m2

,

(A,A)

(A,A,A,A) (A,A)

(A,A) A

ι1,4

id

id (mop
1 ,mop

1 )◦τ2,3

(mop
2 ,mop

2 )

mop
1

mop
2

,

(A,A)

(A,A,A,A) (A,A)

(A,A) A

ι2,3

id

τ
(mop

1 ,mop
1 ))◦τ2,3

(mop
2 ,mop

2 )

mop
1

mop
2

,

(A,A)

(A,A,A,A) (A,A)

(A,A) A

ι1,4

id

id (m1,m1)◦τ2,3

(m2,m2)

m1

m2

.

Corollary 3.19. If C⊗ is the dg nerve of a symmetric monoidal dg model category C, then the
bracket at m0 on Ã is given by the chain homotopy

hι2,3 + hopι1,4 + hopι2,3 + hι1,4

up to higher chain homotopies. Here h and hop are the chain homotopies corresponding to the
image of the square diagram in E1 × E1 for the multiplications and their opposite multiplications
respectively.

Proof. Note first that by construction of the symmetric monoidal structure on C, a morphism
(A, . . . , A)→ (A, . . . , A) in C⊗ corresponds to a map A⊗m → A⊗n in C which is unique up to chain
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homotopy. Similarly, a 2-simplex between such maps corresponds to a chain homotopy between
the corresponding maps in C. Fix such maps in C corresponding to all the involved diagrams.
Horizontal composition of maps is strictly defined in dg categories, and hence we have well defined
whiskering compositions hι2,3, hι1,4, hopι2,3 and hopι1,4. Finally, note that horizontal composition
of chain homotopies is given by addition.

4 Recovering the Hochschild complex as E1-center
Often the Hochschild cohomology of a k-algebra is called its "derived center". In this section we
will show that this statement is true in a very precise sense. Namely, the Hochschild complex is the
E1-center in the derived ∞-category of chain complexes.

4.1 The dg nerve
Theorem 4.20. Let C be a dg category that is tensored over the category of chain complexes of
k-modules, let C′ be a full dg subcategory, and let W be a collection of morphisms in C′ that are
isomorphisms in the homotopy category. Assume that the following conditions are satisfied:

• Every isomorphism in C′ belongs to W .

• The set W satisfies the 2-out-of-3 property.

• For all X ∈ C′, we also have N∗(∆
1)⊗X ∈ C′.

• For each X ∈ C′, the map N∗(∆
1)⊗X → X induced by the map [1]→ [0] belongs to W .

Then the canonical map θ : N(C′0)→ Ndg(C′) induces an equivalence of∞-categories θ′ : N(C′0)[W−1]
≃ Ndg(C′).

Proof. The above conditions are exactly what is needed to repeat the proof of [Lur17, 1.3.4.5]
replacing Ch(A) with C and Ch(A)′ with C′.

Corollary 4.21. Let C be a dg model category, and let C◦ be the full subcategories on bifibrant
objects. Then the map N(Cc0)→ Ndg(C◦) exhibits the dg nerve as the underlying ∞-category of C0.

Proof. Let C∆ be the simplicial category obtained from C. Since N(Cc0)[W−1] ≃ N(C◦)[W−1] is
suffices to take C′ = C◦ above and W the set of homotopy equivalences. Between bifibrant objects,
left homotopy agrees with chain homotopy in the sense a map h : N(∆1)⊗X → Y with the correct
restrictions to {0} and {1}. In particular,

HomC0(N∗(∆
1)⊗X,Y ) ∼= HomCh(k)(N∗(∆

1),MapC(X,Y ))

∼= HomCh≥0
(N∗(∆

1), τ≥0 MapC(X,Y )

∼= HomsSet(∆
1,DK•τ≥0 MapC(X,Y ))

∼= MapC∆
(X,Y )1

so chain homotopies correspond to 1-chains of the mapping complex of C. One checks directly that
the diagram making h : N∗(∆

1) ⊗ X → Y into a homotopy between f, g ∈ HomC0(X,Y ) forces
the corresponding 1-chain z ∈ MapC(X,Y )1 to satisfy dz = f − g. This shows that homotopy
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equivalences in C◦0 become isomorphisms in the homotopy category hC∆, which is isomorpic to
the homotopy category hC. Clearly every isomorphism is a homotopy equivalence and the set of
homotopy equivalences satisfies 2-out-of-3. Since C is tensored over Ch(k), the map ⊗ : Ch(k)×C →
C is a left Quillen bifunctor. The complex N∗(∆

1) is bounded below and therefore cofibrant, and
hence N∗(∆

1) ⊗ − preserves cofibrant objects. At the same time, C is also powered over Ch k
and hence the functor N∗(∆

1) ⊗ − is right adjoint to the left Quillen bifunctor N∗(∆
1)∨ ⊗ −. In

particular, it preserves fibrant objects. This shows that N∗(∆
1) ⊗ X ∈ C◦. Finally, note that

d0 : k → N∗(∆
1) is a trivial cofibration in Ch(k), and thus if X ∈ C◦, the map X ∼= k ⊗ X →

N∗(∆
1)⊗X is again a trivial cofibration. Now the map N∗(∆

1)→ k is a left inverse to d0 and in
particular

X → N∗(∆
1)⊗X → X

is the identity on X and thus a weak equivalence. By 2-out-of-3, this means that N∗(∆
1)⊗X → X

must be a weak equivalence.

Remark 4.22. Note that for any dg category C, we have an equivalence of ∞-categories Nhc(C∆)→
Ndg(C). For simplicial model categories, the homotopy coherent nerve of the bifibrant objects is
always the ∞-category underlying the model category, but C∆ is not tensored and cotensored over
sSet and therefore does not satisfy the requirements of this theorem. The above corollary then
shows that we get this relationship between the homotopy coherent nerve and the model category
regardless.

If C is a (symmetric) monoidal model category, then [Lur17, 4.1.7.6] shows that N(Cc)[W−1] is
a (symmetric) monoidal ∞-category. If C is also a simplicial model category and the (symmetric)
monoidal structure is compatible with the simplicial enrichment, then [Lur17, 4.1.7.16] shows that
the (symmetric) monoidal structure on this ∞-category is given by Nhc((C◦)⊗), and in fact one
readily checks that the same hold if C is just weakly simplicial in the same sense as above. We
would like to use this to argue that the dg nerve of a (symmetric) monoidal dg model category
C is a (symmetric) monoidal ∞-category and also presents the (symmetric) monoidal structure of
N(Cc)[W−1], but unfortunately the Dold-Kan functor is not symmetric, and thus does not send
operads to operads. Nevertheless, it is homotopy symmetric lax monoidal, and in fact V. Hinich
proved

Proposition 4.23 ( [Hin13], 3.2.3). The dg nerve Ndg : N(Catdg)[W
−1
dg ] → N(Cat∆)[W−1

∆ ] ≃
Cat∞ from the symmetric monoidal ∞-category of dg-categories to the symmetric monoidal ∞-
category of ∞-categories is lax symmetric monoidal. In particular, it is a morphism of ∞-operads.
It thus induces a map from the ∞-category of symmetric monoidal dg-categories to the ∞-category
of symmetric monoidal ∞-categories.

Corollary 4.24. The dg nerve induces a map AlgLM⊗(N(Catdg)[W
−1
dg ]) → AlgLM⊗(Cat∞). By

4.25, this means that a dg category left tensored over a monoidal dg category yields an ∞-category
left tensored over a monoidal ∞-category.

4.2 Rectification of algebras over an ∞-operad
Let O be a topological operad. Then we get a dg operad C∗(O; k) by applying the singular chains
functor with coefficients in our field k. We want to view algebras in a symmetric monoidal dg
model category C over this dg operad as algebras over the∞-operad N⊗(Sing•O) in the symmetric
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monoidal ∞-category Ndg(C◦). We generalize the rectification results of V. Hinich [Hin13] and of
D. Pavlov and J. Scholbach [PS14].

Let C be a symmetric monoidal model category that is enriched in the projective model category
of chain complexes over k. Suppose further that C is cofibrantly generated and symetrically flat,
and that C∗(O; k) is admissible and well-pointed in C, and that it admits a lax monoidal fibrant
replacement functor. The construction in [Hin13, 4.2] generalizes directly to give a functor

ϕ : N(AlgC∗(O;k)(C)c)→ AlgN⊗(O)(Ndg(C◦))

that carries weak equivalences to equivalences, and therefore yields a comparison map

Φ : N(AlgC∗(O;k)(C)c)[W−1
AlgC∗(O;k)(C)

]→ AlgN⊗(O)(Ndg(C◦)).

We want to show that this functor is an equivalence of ∞-categories.

Theorem 4.25. Let O and C as above. Then Φ is an equivalence of ∞-categories.

Proof. We use corollary 4.7.3.16 in [Lur17]. Following the reasoning in [PS14, 7.11], we may assume
that C∗(O; k) is Σ-cofibrant in C. Now consider

N(AlgC∗(O;k)(C)c)[W−1
AlgC∗(O;k)(C)

] AlgN⊗(O)(N(Cc)[W−1])

(N(Cc)[W−1])[O]

Φ

G G′

Steps (a)-(c) can be proven exactly like in [Lur17, 4.5.4.7], by just replacing the commutative operad
by O. For step (d), it is clear that G is conservative since the weak equivalences in AlgC∗(O;k)(C)
are transferred from the ones in C via the forgetful functor. To show that G preserves geometric
realization of simplicial objects, it suffices to show that it preserves homotopy sifted colimits. This
is shown in [PS14, prop. 7.9]. Finally, we need to show that the canonical transformation G′ ◦F ′ →
G ◦ F is an equivalence, where F and F ′ are the left adjoints of G and G′ respectively. This boils
down to showing that for any cofibrant object X ∈ C[O], the strict free C∗(O; k)-algebra generated
by X is also a free N⊗(O)-algebra in the sense of [Lur17, def. 3.1.3.1]. In [Hin13, 4.3.4], Hinich has
described an analog of [Lur17, 3.1.3.13] for free algebras generated by objects of different colors.
The arguments described there go through if we replace the category of chain complexes by C. This
finishes the argument.

Proposition 4.26. Let A : E⊗
2 → Ndg(C

◦)⊗ be an E2-algebra in a symmetric monoidal dg model
category. Let Astr be a homotopy preimage of A under Φ. Without loss of generality, assume that
the underlying object of Astr is fibrant. Then there is a chain homotopy

Astr⊗2
Astr

A⊗2 A

Astr(m0)

≃ ≃

A(m0)

and a chain homotopy of chain homotopies

25



Astr⊗2
Astr

A⊗2 A

Astr(m0)

Astr(m0)≃ ≃
A(m0)

A(m0)

Astr(γ0)

A(γ0)

.

In particular, the induced Gerstenhaber algebra in the derived category agrees with the one con-
structed directly from A in section 3.1.

Proof. There is a natural isomorphism η : ∆1×E⊗
2 → Ndg(C

◦)⊗ between Φ(Astr) and A. In partic-
ular, we get isomorphisms Φ(Astr)(⟨n⟩) → A(⟨n⟩), that correspond to isomorphisms Φ(Astr)⊗n →
A⊗n. All the (higher) chain homotopies in the statement now correspond to the evaluation of
η at the appropriate simplices in ∆1 × E⊗

2 . For example, the 1-simplex (e,m0) yields a map
Φ(Astr)⊗2 → A in C, and the 2-simplex (s0e, s1m0) yields a chain homotopy making η(e,m0) into
a composition of Φ(Astr)(m0) and η(e, s0⟨1⟩).

4.3 The Hochschild complex
In this section, let k be a field with k ⊇ Q. Let A be an associative k-algebra. Then Hochschild
cohomology of A is given by the Ext-groups of A as a bimodule over itself, i.e.

HH∗(A,A) = Ext∗A⊗kAop(A,A).

In particular, this is computed by the cochain complex

HomA⊗kAop(P∗, A)

for any projective resolution P∗ of A as a A-bimodule. Classically, one takes P∗ to be the Bar-
resolution. Note that the cochain complex above is the non-negatively graded cochain complex
associated to the non-positively graded chain complex HomCh(Ae)(P∗, A∗) where we view A as chain
complex concentrated in degree zero. As such we have a quasi-isomorphism HomCh(Ae)(P∗, A∗) ≃
HomCh(Ae)(P∗, P∗).

We want to use the equivalence constructed above to view A as an E1-algebra in the symmetric
monoidal ∞-category C⊗ := Ndg(Ch(k)). To this end, let ϕ : C∗(E1)

≃−→ Assoc is the projection
map, then we get ϕ∗A ∈ AlgC∗(E1)(Ch(k)). If Ã

≃
−−−↠ ϕ∗A is a cofibrant replacement, we can then

use theorem 4.25 to get an object Ã ∈ AlgE1
(Ndg(Ch(k)). The rest of this section will go into

proving the following theorem.

Theorem 4.27. For any projective resolution P∗ of A as an Ae-module, the evaluation map

HomCh(Ae)(P∗, P∗)⊗k P∗ → P∗

makes Hochschild complex of A into a center of Ã ∈ AlgE1
(Ch(k)). In particular, this makes

HomCh(Ae)(P∗, P∗) into an element of AlgE1
(AlgE1

(Ndg(Ch(k)))) ≃ AlgE2
(Ndg(Ch(k))).
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Corollary 4.28. The strictification of the Hochschild complex HomCh(Ae)(P∗, P∗) ∈ Ch(k) natu-
rally carries the structure of a C∗(E2)-algebra. This C∗(E2)-algebra structure recovers the classical
Gerstenhaber algebra structure in homology.

Sketch! The first part follows directly from the rectification theorem 4.25. For the second part,
we use corollary 3.19. It hence suffices to show that the image of m0 and γ0 under the E2-algebra
structure above are chain homotopic to the cup product and bracket respectively. This follows from
theorem 4.32.

4.4 The center as endomorphism object of bimodules
To show that this indeed yields a center for Ã, we will employ some methods to compute the
center in algebra categories. Throughout this chapter, let O⊗ be a coherent ∞-operad; we will
mostly be interested in the case O⊗ = E⊗

1 . Let C⊗ → Fin∗ be a symmetric monoidal ∞-category
and consider the unique bifunctor of ∞-operads O⊗ × LM⊗ → Fin∗×Fin∗

∧−→ Fin∗. We get a
coCartesian fibration AlgO(C)⊗ → LM⊗ with fibers over a and m respectively both equivalent to
AlgO(C). Let A ∈ AlgO(C)m. This comes from the fact that AlgO(C) admits the structure of a
symmetric monoidal ∞-category and is hence left tensored over itself. If A admits a center, it has
the structure of an associative algebra object in AlgO(C)a. In particular, if O⊗ = E⊗

k is a little
k-cubes operad, by Dunn additivity we get

z(A) ∈ Alg(AlgEk
(C)) ≃ AlgE⊗

k+1
(C).

Let A be an associative algebra over k. Then there is an equivalence of categories between algebra
objects in the monoidal category of A-bimodules and associative algebras under A. In particular,
an A-bimodule structure on an associative algebra B is the same as an algebra morphism A→ B,
and the equivalence is given by sending the bimodule structure to its unit morphism. Now the
centralizer of an algebra morphism f : A→ B is defined as

z(f) = {b ∈ B : ∀a ∈ A : f(a)b = bf(a)}.

Viewing the data of f as an A-bimodule structure on B, we can see that this agrees with the set of
A-bimodule maps from A to B:

z(f) ∼= HomBimodA
(A,B).

To generalize this relationship between the center and bimodule morphisms to ∞-operads, one
needs to first recover the statement on algebra objects in the monoidal category of bimodules. To
this end, let A ∈ AlgO(C)m and let A ∈ LMod1(AlgO(C)m) be a lift of A as a module over the
trivial algebra. We get a coCartesian LM⊗-family of O-operads

C⊗ ×Fin∗ (O⊗ × LM⊗)→ O⊗ × LM⊗,

and we can regard A as a coCartesian LM⊗-family of O-algebras by noting that there is a bijection

FunLM⊗(LM⊗,AlgLM⊗

/O (C⊗ ×Fin∗ (O⊗ × LM⊗))) ≃ FunLM⊗(LM⊗,AlgO(C)⊗).
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We can view A as an O-module over itself, and hence A also determines a coCartesian LM⊗-family
of O-algebras in the coCartesian LM⊗-family of O-operads

C
⊗
:= ModO,LM⊗

A
(C⊗ ×Fin∗ (O⊗ × LM⊗))⊗ → O⊗ × LM⊗.

This notation allows us to identify algebra objects in the category of A-bimodules as algebras under
A.

Proposition 4.29 (Proposition 5.3.1.27 [Lur17]). The forgetful functor

θ : AlgLM⊗

/O (ModO,LM⊗

A
(C⊗ ×Fin∗ (O⊗ × LM⊗))ALM⊗/ → AlgLM⊗

/O (C⊗ ×Fin∗ (O⊗ × LM⊗))ALM⊗/ .

Note that for all s ∈ LM⊗, the algebra As ∈ Alg/O(ModO
As

(C⊗ ×Fin∗ (O⊗ × {s}))) is the trivial
algebra, so in particular for s = m we get an equivalence

θm : Alg/O(ModO
A(C⊗ ×Fin∗ (O⊗ × {m})))→ Alg/O(C⊗ ×Fin∗ (O⊗ × {m}))A/ ≃ AlgO(C)

A/
m .

Since A(a) is the trivial algebra, we have an equivalence C⊗a ≃ C⊗×Fin∗ (O⊗×{a}), and therefore
AlgLM⊗

/O (C)a ≃ AlgO(C)a. To find the centralizer of idA in AlgO(C)m, it hence suffices to find the
centralizer of idA in Alg/O(ModO

A(C⊗ ×Fin∗ (O⊗ × {m}))), in which A is the trivial algebra. After
that, we can use proposition 2.13 to get the center z(A) ∈ Alg(AlgO(C)a) of A.

Theorem 4.30 (Proposition 5.3.1.29 [Lur17]). Suppose that for all X ∈ O, there exists a mor-
phism object MorCX,m

(A(X), A(X)) ∈ CX,a. Then there exists a centralizer z(idA) ∈ AlgLM⊗

/O (C)a.
Furthermore, if Z ∈ AlgLM⊗

/O (C)a, then a commutative diagram

Z ⊗A

A A
idA

exhibits Z as the centralizer of idA if and only if for all X ∈ O, the induced map Z(X)⊗A(X)→
A(X) exhibits Z(X) as a morphism object of A(X) and A(X).

Proof. By definition, the centralizer is a final object of the ∞-category

A := (AlgLM⊗

/O (C)a)1 ×(AlgLM⊗
/O (C)m)A/

(AlgLM⊗

/O (C)m)A//A.

Since As is the trivial algebra in C⊗s for s ∈ {a,m}, we can use [Lur17, Theorem 2.2.2.4] to get an
O⊗-monoidal ∞-category

E⊗ := (C⊗a )1O/
×

(C⊗
m)AO/

(C⊗m)AO//AO
→ O⊗

such that Alg/O(E) ≃ A. Finally, use that limits in algebra categories are computed object-wise
by [Lur17, 3.2.2.5], and hence we are reduced to showing that for each X ∈ O, the fiber EX admits
a final object. But a final object in

EX ≃ (CX,a)1(X)/ ×(CX,m)A(X)/
(CX,m)A(X)//A(X)

is equivalent to a morphism object MorCX,m
(A(X), A(X)) by proposition 2.4.
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Corollary 4.31. Let O⊗ = E⊗
1 , and let A ∈ AlgE1

(C) be an E1-algebra in a symmetric monoidal
∞-category C⊗. Assume that the morphism object MorModE1

A (C⊗×Fin∗E⊗
1 )a

(A(a), A(a)) ∈ C exists.
Then there exists a centralizer z(idA) ∈ AlgE1

(C) with underlying object

z(idA)(a) ≃ MorModE1
A (C⊗×Fin∗E⊗

1 )a
(A(a), A(a)),

and the action of the centralizer has underlying map given by the evaluation α of the morphism
object on A(a). Further, the multiplication of the E1-algebra structure on z(idA) is induced by the
action of the tensor product z(idA)(a)⊗ z(idA)(a) on A(a) given by the tensor product α⊗ α in Ea:

A(a)
≃−→ A(a)⊗A(a)→ (z(A)(a)⊗A(a))⊗ (z(A)(a)⊗A(a))→ A(a)⊗A(a) mult.−−−→ A(a).

The proof of theorem 4.30 actually tells us much more than just the existence of the centralizer.
Both E1-algebra structures on z(A) are induced by actions of z(A)⊗ z(A) on A by the property of
the morphism object being final. In the above corollary, we obtained this action by knowing the
monoidal structure in the double slice category.

To understand the algebra structure on the center, note that [Lur17, Theorem 2.2.2.4] gives a
precise characterization of coCartesian lifts and hence tensor products in a parametrized under-
category. In particular, if q : C⊗ → O⊗ is a coCartesian fibration of∞-operads, and A ∈ Alg/O(C),
then the induced map q′ : C⊗AO/

→ O⊗ is a fibration of ∞-operads. If further A is a trivial
O⊗-algebra, q′ is even a coCartesian fibration of ∞-operads, and a morphisms F over f in O⊗

∆1 ×∆{0} ∆1 ×∆1 ∆1

O⊗ ×∆{0} C⊗ O⊗

f

ι p1

F f

A q

is q′-coCartesian if and only if F |∆1×∆{1} is q-coCartesian. In particular, if C⊗ is monoidal, the
underlying object tensor product in the parametrized slice category is the tensor product in C⊗.

Theorem 4.32. Let O⊗ = E⊗
1 and let A ∈ AlgE1

(C) as above. Warning: Missing parts.

4.5 The category of E1-modules in chain complexes
As explained above, we want to apply this corollary to the symmetric monoidal ∞-category C⊗ =
Ndg(Ch(k)) and Ã ∈ AlgE1

(C). Note that E⊗
2 only has a single color a, and by the above theo-

rem the underlying object of the center z(Ã) at this color is equivalent to the morphism object
MorC̄a,m

(Ã, Ã) ∈ C̄a,a. Here Ã is viewed as a module over itself, i.e. as an object of

Ca,m = ModE1

Ã
(C ×N(Fin∗) E1)a.

Note that Ca,a = ModE1
1 (C ×N(Fin∗) E1)a ≃ (C⊗ ×N(Fin∗) E⊗

1 )a ≃ C, so

z(Ã)(a) ≃ MorModE1
Ã

(C×N(Fin∗)E1)a
(Ã, Ã) ∈ C.
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We are hence reduced to showing that HomCh(Ae)(P, P ) together with the evaluation map is such
a morphism object, meaning that it satisfies the universal property of 2.3.

To show this, we must understand the∞-category ModE1

Ã
(Ndg(Ch(k))×N(Fin∗)E1)a. By [Hin13,

B.1.2], we have an equivalence of ∞-categories

ModE1

Ã
(Ndg(Ch(k))×N(Fin∗) E1)a ≃ AlgME1

(Ndg(Ch(k)))×AlgE1
(Ndg(Ch(k))) {Ã}.

We can now use Hinich’s rectification theorem for modules [Hin13, 5.2.3] to get an equivalence of
∞-categories

N(ModC∗(E1)

Ã
(Ch(k))c)[W−1

Mod]
≃−→ ModE1

Ã
(Ndg(Ch(k))×N(Fin∗) E1)a.

Note here that since Ã is cofibrant, by [BM08, 2.6] the module category ModC∗(E1)

Ã
(Ch(k)) indeed

carries a model category structure transferred via the forgetful functor to Ch(k). Similarly, by
[BM08, 2.7], the category LModUC∗(E1)(Ã)(Ch(k)) can be made into a model category via transfer
from the forgetful functor. By [BM08, 1.10] we have an isomorphism of categories making the
following diagram commute

ModC∗(E1)

Ã
(Ch(k)) LModUC∗(E1)(Ã)(Ch(k))

Ch(k)

∼=

In particular, this isomorphism yields a Quillen equivalence between these two categories.

4.6 The trouble with universal enveloping algebras
We now want to relate this category of left modules over UC∗(E1)(Ã) to the category Ch(Ae). To
this end, we have the following result.

Proposition 4.33. There exists a zig-zag of quasi-isomorphisms between UC∗(E1)(Ã) and A⊗kAop.

Proof. Let θ : A∞
≃
−−−↠ Assoc be a cofibrant replacement, and note that we have a diagram

C∗(E1)

A∞ Assoc

ϕ,≃
ψ,≃

θ,≃

Since we work in characteristic zero, all of the involved operads are admissible and Σ-cofibrant.
In particular, all the above weak equivalences are strong equivalences of operads, and thus induce
a Quillen equivalence between their respective algebra categories. Let A′ ≃

−−−↠ A be a cofibrant
replacement in associative algebras, and let Â

≃
−−−↠ θ∗A′ be a cofibrant replacement in A∞-algebras.

Then in particular, the unit map Â→ ψ∗ψ!Â is a weak equivalence, and hence using [Fre09, Theorem
17.4.A, 17.4.B] we get the following diagram of weak equivalences of dg algebras
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UA∞(Â)

UA∞(θ∗A′) UA∞(ψ∗ψ!Â)

A′ ⊗k A′op = UAssoc(A
′) UC∗(E1)(ψ!Â)

A⊗k Aop

≃ ≃

θ♭ ψ♭

≃

It hence suffices to show that UC∗(E1)(ψ!Â) is quasi-isomorphic to UC∗(E1)(Ã). To this end, let

A1
≃
−−−↠ ϕ∗A′ be any cofibrant replacement. Note that ψ!Â is again cofibrant, and we hence have

a lift f : ψ!Â→ A1 in the diagram

∅ A1

ψ!Ã ϕ∗A′

≃

≃

f

and by 2-out-of-3, f must be a weak equivalence. This is a weak equivalence between cofi-
brant objects, so again by [Fre09, Theorem 17.4.A], we get a quasi-isomorphism UC∗(E1)(ψ!Â)

≃−→
UC∗(E1)(A1). The map ϕ∗A′ → ϕ∗A is again a trivial fibration as ϕ∗ is right Quillen, and in
particular the composition

A1
≃
−−−↠ ϕ∗A′ ≃

−−−↠ ϕ∗A

is again a cofibrant replacement. We now again find a lift g : A1 → Ã in the diagram

∅ Ã

A1 ϕ∗A

≃

≃

g

which again is a weak equivalence, and thus finally induces a quasi-isomorphism

UC∗(E1)(A1)
≃−→ UC∗(E1)(Ã).

Summarizing, we get the following zig-zag

A⊗k Aop ≃←− UA∞(Â)
≃−→ UC∗(E1)(Ã).

Corollary 4.34. Let Ã
≃
−−−↠ ϕ∗A be a cofibrant replacement of the associative algebra A as

an C∗(E1)-algebra. Then the category LModA⊗kAop(Ch(k)) is Quillen equivalent to the category
LModUC∗(E1)(Ã)(Ch(k)).

Finally, we have an isomorphism
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LModA⊗kAop(Ch(k)) Ch(A⊗k Aop)

Ch(k)

∼=

which again induces a Quillen equivalence. In particular, the two model categories Ch(A ⊗k Aop)

and ModC∗(E1)

Ã
(Ch(k)) are Quillen equivalence and therefore present the same ∞-category.

Corollary 4.35. There is an equivalence of ∞-categories

Ndg(Ch(A⊗k Aop)◦)
≃−→ ModE1

Ã
(Ndg(Ch(k))×N(Fin∗) E1)a.

Proof. This follows from the above discussion together with the fact that Ch(A⊗Aop) satisfies the
conditions of corollary 4.21.

4.7 Morphism objects in dg model categories
To proof theorem 4.27, we want to argue that HomChAe(P, P ) is an endomorphism object of Ã in
the E1-module category over Ã. We have already seen that this module category is equivalent to the
∞-category Ndg(Ch(A

e)◦), and we know that HomChAe(P, P ) ∈ Ch(k) is indeed an endomorphism
object for P ≃ A in the dg category Ch(Ae). To finish the argument, we will now proof the following
general theorem connecting morphism objects in a dg category and its underlying ∞-category.

Lemma 4.36. If C is a monoidal dg model category with underlying monoidal product ⊗ : C0×C0 →
C0. Then the induced monoidal product Ndg(C◦)×Ndg(C◦)→ Ndg(C◦) sends A,B ∈ C◦ to an object
equivalent to R(A ⊗ B). A similar statement holds for dg model categories left tensored over a
monoidal dg model category.

Proof. Missing parts!

Theorem 4.37. Let C be a monoidal dg model category and let M be a dg model category that
is left tensored over C. In particular, we have a dg functor ⊗ : C ⊠M → M whose underlying
functor is a left Quillen bifunctor. Assume that for A,B ∈ M◦ we have a dg morphism object
HomM(A,B) ∈ C together with map α : HomM(A,B)⊗ A→ B in M such that composition with
α induces an isomorphism

MapC(C,HomM(A,B)) ∼= MapM(C ⊗A,B). (2)

Then

(1) The induced map α̃ ∈ MapNdg(M◦)(R(QHomM(A,B) ⊗ A), B) makes QHomM(A,B) ∈
Ndg(C◦) into a morphism object for A,B ∈ Ndg(M◦) in the sense of definition 2.3.

(2) If β : R(M ⊗ A)→ B is another morphism object for A and B in Ndg(M◦), then f : M
≃−→

QHomM(A,B) is a weak equivalence in C, and α̃ ◦R(f ⊗ idA) ≃ β are chain homotopic.

Proof. For (1), note that if C ∈ Ndg(C◦) is bifibrant, QHomM(A,B)
≃
−−−↠ HomM(A,B) is the

cofibrant replacement map, and C⊗A ≃
↪−→ R(C⊗A) is the fibrant replacement map, we get a weak

equivalence

MapC(C,QHomM(A,B))
≃−→ MapC(C,HomM(A,B)) ∼= MapM(C ⊗A,B)

≃−→ MapM(R(C ⊗A), B)
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of chain complexes. Applying DK•τ≥0, we get

MapNdg(C◦)(C,QHomM(A,B)) ≃ MapNdg(M◦)(R(C ⊗A), B)

together with lemma 4.36 this yields the result.
For (2), we automatically getM ≃ HomM(A,B) in the∞-categoryNdg(C◦) since morphism objects
are unique up to equivalence. Now recall that Ndg(C◦) ≃ N(Cc)[W−1], and since model categories
are saturated this implies the result.

This finally allows us to proof the main theorem of this section.

Proof of theorem 4.27. By theorem ??, it suffices to show that ev : HomCh(Ae)(P, P ) ⊗k P → P

makes HomCh(Ae)(P, P ) into an endomorphism object for Ã in the ∞-category ModE1

Ã
(C ×N(Fin∗)

E1)a. By corollary 4.35, this ∞-category is equivalent to the ∞-category Ndg(Ch(A
e)◦). Note that

M = Ch(Ae) satisfies the conditions of theorem 4.37 with C = Ch(k), and P ∈M is indeed cofibrant
(and thus bifibrant). Therefore, the evaluation map above indeed makes HomCh(Ae)(P, P ) into a
morphism object for P ∈ Ndg(Ch(A

e)◦). Clearly, P is equivalent to Ã viewed in the E1-module
category, and we hence get our result.

5 The Hochschild complex of a scheme
We would now like to globalize the above results and consider a quasi-compact separable scheme
X over a field k with Q ⊆ k. In particular, we suggest that the E1-center of the structure sheaf is
the morally correct way to define the Hochschild complex of such a scheme. Note that this does
not require X to be smooth.

5.1 The ∞-category of sheaves of k-modules
Let X be a scheme as above. Then OX is an associative algebra in the category of sheaves of
k-modules on X. We again want to view OX as a E1-algebra in the associated ∞-category.

Proposition 5.38 ( [Hin05], Theorem 1.3.1). Let S be a site. There is a cofibrantly generated
model structure on the category Ch(Ŝk) of presheaves of k-module complexes on S with

• weak equivalences the maps f : F → G such that the sheafification fa : Fa → Ga is a quasi-
isomorphism of sheaves,

• cofibrations generated by maps f : F → F⟨x; dx = z ∈ F(U)⟩ corresponding to adding a
section to kill a cycle z over U ∈ S, and

• fibrations the maps f : F → G such that f(U) : F(U)→ G(U) is surjective for all U ∈ S and
for any hypercover ϵ : V• → U the diagram

F(U) Č(V•,F)

G(U) Č(V•,G)

f(U)
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is a homotopy pullback.

This is the left Bousfield localization of the projective model structure on Ch(Ŝk) with respect
to the Čech complexes of hypercoverings. We therefore call it the local projective model structure.
Note that if S has enough points, weak equivalences can be detected at stalks.

Definition 5.39. Let X be a scheme over k. We consider the following two sites naturally asso-
ciated to X. Let Aff(X) be the site of affine open subsets of X, and let Open(X) the site of all
open subsets of X. We have a natural inclusion ι : Aff(X)→ Open(X) that induces to a restriction
functor

ι∗ : Ch( ̂Open(X)k)→ Ch(Âff(X)k)

Proposition 5.40. The restriction functor ι∗ admits a left adjoint ι−1 and the pair ι−1 ⊣ ι∗
forms a Quillen equivalence. Both ι∗ and ι−1 preserve weak equivalences, and ι−1 preserves acyclic
fibrations. The unit id⇒ ι∗ι

−1 is an isomorphism, and the counit ι−1ι∗ ⇒ id is a component-wise
weak equivalence.

Proof. The left adjoint ι−1 is given by ι−1F(V ) = colim
V⊆U∈Âff(X)

F(U). The direct image ι∗
clearly preserves acyclic fibrations, since these are pointwise. The sites of all opens and of affine
opens have the same points, namely points in the topological space X. This follows because affine
opens form a basis of the Zariski topology. Even more, ι∗ and ι−1 preserve stalks at these points.
Taking stalks is a left adjoint, so this follows trivially for the inverse image, and for the direct
image we note that small enough neighborhoods of a point x ∈ X always contain an affine open
neighborhood of x. This shows that both adjoints preserve weak equivalences, and in particular ι−1

preserves acyclic cofibrations. The fact that ι−1 preserves acyclic fibrations follows from the fact
that filtered colimits are exact in Grothendieck categories. Finally, note that if U is affine, then
colim

U⊆W∈Âff(X)
F(W ) ∼= F (U) since U is final in the index category. This shows that the unit is

an isomorphism. The fact that the counit is a component-wise weak equivalence again follows from
the fact that both adjoints preserve weak equivalences.

Definition 5.41. We call the underlying ∞-category of the local projective model structure on
Ch( ̂Open(X)k) is the ∞-category of sheaves of k-modules on X

Sh∞(X) := N(Ch( ̂Open(X)k)
c)[W−1].

By proposition 5.40, we have an equivalence of ∞-categories

ι∗ : N(Ch(Âff(X)k)
c)[W−1]→ Sh∞(X)

with quasi-inverse ι−1 : Sh∞(X)→ N(Ch(Âff(X)k)
c)[W−1].

Remark 5.42. Even though the model categories of presheaves on affine opens and general opens
yield the same ∞-category, the above model category structure depends on the choice of site. On
affine open subsets, all quasi-coherent sheaves on X automatically fibrant, which is not true for
general opens. In particular, on affine opens the structure sheaf OX itself is fibrant.

Proposition 5.43. If the tops on S has enough points and S admits finite products, then the local
projective model structure yields a closed symmetric monoidal model category. If in addition S
admits a final object, then Ch(Ŝk) is a dg symmetric monoidal model category.
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Proof. By [PS14, Prop. 7.9], the global projective model structure on Ch(Ŝk) inherits the structure
of a (symmetric) monoidal model category since S admits finite products. By [Whi14, Thm. 4.6], to
show that this monoidal model structure descends to the local projective model structure, it suffices
to argue that for f a local weak equivalence and F a cofibrant object, the map f ⊗ idF is again a
local weak equivalence. But this is clear if the topos has enough points, since we can then check
local weak equivalences on stalks. Since the presheaf category admits an internal hom, this shows
the first part. For the second part, note that presheaves of chain complexes are the same as chain
complexes of presheaves of k-modules. Since the later is an abelian category, this automatically
admits a dg enrichment. Recall that if ∗ ∈ S is terminal, we have the constant presheaf functor

C∗ : Ch(k)→ Ch(Ŝk)

C 7→ (U 7→ C)

By the argument below, this functor preserves cofibrations. We can hence define a tensoring

Ch(k)× Ch(Ŝk)→ Ch(Ŝk), (C,F) 7→ C∗(C)⊗F

as well as a powering

Ch(k)op × Ch(Ŝk)→ Ch(Ŝk), (C,F) 7→ Hom(C∗(C),F).

One easily checks that these indeed satisfy the correct adjointness properties. It hence suffices to
check the pushout-product axiom. But if i : C → D is a cofibration in Ch(k), then C∗(i) : C∗(C)→
C∗(D) is a cofibration in Ch(Ŝk), and therefore this follows directly from the pushout-product
axiom in Ch(Ŝk).

Let U ⊆ X be an affine open. Then we have adjoint functors

Ch(k) Ch(Âff(X)k).
CU

ΓU

⊣

where ΓU sends a complex of presheaves F to F(U) and CU is the constant presheaf functor sending
C to the presehaf

V 7→

{
C if V ⊆ U
0 otherwise

.

If we equip Ch(Âff(X)k) with the projective model structure, then ΓU preserves fibrations and weak
equivalences by construction. Therefore we obtain a Quillen adjunction. We can compose this with
the Quillen adjucntion

Ch(Âff(X)k)
proj Ch Âff(X)k)

loc
id

id

⊣

of the Bousfield localization to obtain a Quillen adjunction

Ch(k) Ch(Âff(X)k)
loc.

CU

ΓU

⊣
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Since CU is left Quillen, it preserves weak equivalences between cofibrant objects. But every object
in Ch(k) is cofibrant, so CU preserves weak equivalences.

The same argument works if we instead consider the site of all opens Open(X). In this case,
for any open V ⊆ X we obtain a Quillen adjunction CV ⊣ ΓV . Note that in particular we can then
take U = X. If U is affine, this agrees with the above construction.

The functors CV and ΓV are both strong monoidal, since the tensor product of presheaves is
takes section-wise. In particular, we obtain lax monoidal functors of ∞-categories CV : D∞(k)⊗ →
Sh∞(X)⊗ and RΓV : Sh∞(X)⊗ → D∞(k)⊗.

Definition 5.44. Let O be a dg operad. The corresponding operad in Ch( ̂Open(X)k) is given by
CX(O). By abuse of notation, we will usually denote the operad CX(O) just by O.

Lemma 5.45. The functor CX preserves cofibrancy and Σ-cofibrancy of operads, as well as weak
equivalences of operads. Every operad in Ch(X̂k) is admissible, and even strongly admissible if it
is in the image of CX .

Proof. The Quillen adjunction CX ⊣ ΓX induces adjunctions between the respective categories of
symmetric collections and symmetric operads, since both are strong symmetric monoidal. The
model structure on symmetric collection is transferred from the underlying model category, and
hence the adjunction is again Quillen. Similarly, fibrations and weak equivalences of operads are
pointwise, and hence ΓX preserves fibrations and trivial fibrations of operads. To see that CX
preserves weak equivalences, note that these are point-wise in operads, and CX preserves weak
equivalences on the underlying model categories. To see that operads in Ch( ̂Open(X)k) are ad-
missible, use [PS14, Theorem 5.11] and section 8 of [PS18]. Now to see that every operad in the
image of CX is even strongly admissible, use [PS14, Proposition 6.3] together with the fact that
any operad in Ch(k) is Σ-cofibrant.

This shows that we get a diagram of admissible Σ-cofibrant operads

CX(C∗(E1))

CX(A∞) CX(Assoc)

CX(ϕ),≃
CX(ψ),≃

CX(θ),≃

and CX(A∞) is still cofibrant.

We can hence form the C∗(E1)-algebra ϕ∗OX and choose a cofibrant replacement ÕX
≃
−−−↠

ϕ∗OX . Then we have ÕX ∈ AlgE1
(Sh∞(X)) and can consider the center

z(ÕX) ∈ AlgE1
(AlgE1

(Sh∞(X))) ≃ AlgE2
(Sh∞(X)).

The rectification theorem 4.25 applies to E2 algebras in the ∞-category of sheaves on X. In par-
ticular, Ch( ̂Open(X)k) is symmetrically flat by the proof of lemma 5.45. This means that we can
strictify this E2-algebra structure to the category of complexes of presheaves.

The remainder of this chapter is dedicated to arguing that this center is the correct Hochschild
complex of X. In particular, we will show that for a smooth scheme this recovers the sheaf of
polydifferential operators.
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5.2 The Hochschild complex of a scheme is local
In this section we will prove the following theorem, showing that the center of a scheme satisfies a
homotopy descent condition.

Theorem 5.46. Let U = Spec(A) ⊆ X be an affine open. The map RΓU : Sh∞(X) → D∞(k) is
lax symmetric monoidal and hence induces a map RΓU : AlgE2

(Sh∞(X)) → AlgE2
(D∞(k)). We

have

RΓU (z(ÕX)) ≃ z(Ã) ∈ AlgE2
(D∞(k))

for any cofibrant replacement Ã of A.

Just like in the affine case, we have

z(ÕX)(a) ≃ MorModE1
ÕX

(Sh∞(X)×Fin∗E1)a
(ÕX , ÕX) ∈ Sh∞(X),

and it hence suffices to understand this endomorphism object. To this end, note that we can adapt
Hinich’s rectification theorem for modules [Hin13, 5.2.3] to the local projective model structure on
complexes of presheaves to get an equivalence of ∞-categories

N(ModC∗(E1)

ÕX
(Ch( ̂Open(X)k))

c)[W−1
Mod] ≃ ModE1

ÕX
(Sh∞(X)×Fin∗ E1)a.

Again following the affine case, we have a Quillen equivalence

ModC∗(E1)

ÕX
(Ch( ̂Open(X)k))

∼= LModUC∗(E1)(ÕX)(Ch(
̂Open(X)k)).

Proposition 5.47. There exists a zig-zag of weak equivalences betwen UC∗(E1)(ÕX) and OX ⊗OX
in the category of associative algebras in Ch( ̂Open(X)k).

Proof. We adapt the proof of proposition 4.33. Let O′
X

≃
−−−↠ OX be a cofibrant resolution of

Assoc-algebras in Ch( ̂Open(X)k). Then

(O′
X ⊗O′

X)x
∼=−→ O′

X,x ⊗O′
X,x

≃−→ OX,x ⊗OX,x
∼=−→ (OX ⊗OX)x,

showing that O′
X ⊗O′

X is weakly equivalent to OX ⊗OX . The rest of the argument goes through
exactly like before with the following amendment: Let ÔX

≃
−−−↠ θ∗O′

X be a cofibrant replacement
of A∞-algebras. To obtain the zig-zag

UA∞(ÔX)

UA∞(θ∗O′
X) UA∞(ψ∗ψ!ÔX)

≃ ≃

we have to argue that the underlying complexes of presheaves of these A∞-algebras are cofibrant.
To this end, recall from lemma 5.45 that A∞ and Assoc are both strongly admissible, meaning
that the forgetful functor from algebras preserves cofibrant objects. In particular, the underlying
complexes of presheaves of O′

X and ÔX are both cofibrant. Now recall that ψ! is left Quillen
and hence preserves cofibrancy, and the restriction of scalars functors θ∗ and ψ∗ do not alter the
underlying complex. This finishes the argument.
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In particular, the category LModUC∗(E1)(ÕX)(Ch(
̂Open(X)k)) is Quillen equivalent to the cate-

gory LModOX⊗OX
(Ch( ̂Open(X)k)).

Lemma 5.48. The category LModOX⊗OX
(Ch( ̂Open(X)k)) is a dg model category that is left ten-

sored over Ch( ̂Open(X)k)). For M,N ∈ LModOX⊗OX
(Ch( ̂Open(X)k)), we have a morphism

object

HomOX⊗OX
(M,N )(V ) = HomOV ⊗OV

(M|V ,N|V ) ∈ Ch( ̂Open(X)k).

Proof. Since LModOX⊗OX
(Ch( ̂Open(X))k)) is the category of complexes of presheaves of OX⊗OX -

modules, the dg enrichment is clear. Now note that LModOX⊗OX
(Ch( ̂Open(X))k)) is tensored and

powered over Ch( ̂Open(X)k): If F ∈ Ch( ̂Open(X)k) andM∈ LModOX⊗OX
(Ch( ̂Open(X))k)), we

obtain an OX ⊗OX -module structure on the tensor product in complexes of presheaves by

(OX ⊗OX)⊗ (F ⊗M) ∼= F ⊗OX ⊗OX ⊗M→ F ⊗M.

We obtain a module structure on Hom
Ch( ̂Open(X)k)

(F ,M) by the pointwise module structure

OX ⊗OX ⊗Hom
Ch( ̂Open(X)k)

(F ,M)→ Hom
Ch( ̂Open(X)k)

(M,M)⊗Hom
Ch( ̂Open(X)k)

(F ,M)

composition−−−−−−−→ Hom
Ch( ̂Open(X)k)

(F ,M).

One easily checks that these indeed yield a tensoring and powering respectively. Now to make the
module category into a dg category, we precompose these operations with the constant presheaf
functor CX : Ch(k) → Ch( ̂Open(X)k). The pushout-product axiom is checked in [Hin05, Lemma
1.6.3], and Hinich also shows in the same section that the above yields a morphism object.

We can now again use theorem 4.37 to conclude that the center of ÕX in the ∞-category
AlgE1

(Sh∞(X)) is given by

z(ÕX)(a) ≃ QHomOX⊗OX
(O,O)

for a bifibrant model O of OX as an OX⊗OX -module. The center action is given by the evaluation
map

R(QHomOX⊗OX
(O,O)⊗O)→ O.

This is in contrast to the affine case, where A was already fibrant as an A⊗A-module. The reason
for this is that OX is not fibrant in the local projective model structure on Ch( ̂Open(X)k). It is
however fibrant in the local projective model structure for the site of affine opens on X, and we
have already seen that presheaves on this smaller site present the same ∞-category.

Proposition 5.49. We have an equivalence

ι∗(QHomOX⊗OX
(O,O)) ≃ QHomι∗(OX⊗OX)(P,P)

for any cofibrant resolution P
≃
−−−↠ ι∗OX in LModι∗(OX⊗OX)(Ch(Âff(X)k).
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Lemma 5.50. We have a Quillen equivalence

LModι∗(OX⊗OX)(Ch(Âff(X)k)) LModOX⊗OX
(Ch( ̂Open(X)k)).

ι∗

ι∗

⊣

Both adjoints preserve weak equivalences.

Proof. The Quillen equivalence ι−1 ⊣ ι∗ induces a Quillen equivalence

LModι∗(OX⊗OX)(Ch(Âff(X)k)) LModι−1ι∗(OX⊗OX)(Ch( ̂Open(X)k)).
ι−1

ι∗

⊣

The counit yields a weak equivalence ϵ : ι−1ι∗(OX ⊗OX)
≃−→ OX ⊗OX , and hence we get a Quillen

equivalence

LModι−1ι∗(OX⊗OX)(Ch( ̂Open(X)k)) LModOX⊗OX
(Ch( ̂Open(X)k)).

ϵ∗

ϵ∗

⊣

composing these yields the Quillen equivalence in the statement. Clearly, ϵ∗ preserves weak equiv-
alences. But ϵ is an isomorphism on stalks, and hence ϵ∗ also preserves weak equivalences.

Lemma 5.51. For F ∈ LModι∗(OX⊗OX)(Ch(Âff(X)k)) and G ∈ LModOX⊗OX
(Ch( ̂Open(X)k)),

we have

ι∗HomOX⊗OX
(ι∗F ,G) ∼= Homι∗(OX⊗OX)(F , ι∗G).

Proof. Let U ∈ Aff(X), and let ι′ : Aff(U)→ Open(U) be the inclusion. Then

HomOU⊗OU
(ι∗F|U ,G|U ) ∼= HomOU⊗OU

(ι′∗(F|U ),G|U )
∼= Homι′∗(OU⊗OU )(F|U , ι′∗(G|U ))
∼= Homι∗(OX⊗OX)|U (F|U , ι∗G|U ).

Proof of proposition 5.49. By definition, we have a diagram

P ′ OX

O

≃

≃

with P ′ cofibrant and O bifibrant. If P
≃
−−−↠ ι∗OX is a cofibrant resolution, we get a weak

equivalence ι∗P ≃−→ ι∗ι∗OX and ι∗P is still cofibrant. We can hence solve the following lifting
problem

0 P ′

ι∗P ι∗ι∗OX OX

≃

≃ ≃
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and by 2-out-of-3, the map ι∗P → P ′ is again a weak equivalence. Let ι∗P
≃
↣ R be a fibrant

resolution. We can also solve the lifting problem

ι∗P P ′ O

R 0

≃

≃ ≃

to obtain a weak equivalence R ≃−→ O. In particular, this is a weak equivalence between bifibrant
objects. Therefore,

ι∗QHomOX⊗OX
(O,O) ≃ ι∗QHomOX⊗OX

(R,R)
≃ ι∗QHomOX⊗OX

(ι∗P,R)
≃ QHomι∗(OX⊗OX)(P, ι∗R)
≃ QHomι∗(OX⊗OX)(P,P),

where in the last step we used that ι∗ι∗(P) ∼= P and that hence ι∗R ← ι∗ι
∗P is a weak equivalence

between fibrant objects.

Since ι∗ is symmetric monoidal, we get an induced E2-algebra structure onQHomι∗(OX⊗OX)(P,P),
and in view of theorem 5.46, the above argument shows that if U ⊆ X is affine, then

RΓU (z(ÕX)) ≃ RΓU (QHomι∗(OX⊗OX)(P,P))

as E2-algebras. It now suffices to show that

RΓU (QHomι∗(OX⊗OX)(P,P)) ≃ HomA⊗A(P, P )

for U = Spec(A) and P
≃
−−−↠ A a cofibrant replacement. Since we will solely work with the affine

open site from now on, we will denote the restriction of a presheaf F on Open(X) to a presheaf on
Aff(X) simply by F for the remainder of this section.

Definition 5.52. Let DX be the site of affine opens onX×kX of the formW×kW forW ⊆ X affine
open. Of course, this site is isomorphic to the affine open site on X, but it better conceptualizes
sheaves coming from A-bimodules.

Lemma 5.53. 1. The maps

∆∗ : Ch(Âff(X)k)→ Ch((D̂X)k), F 7→ (W ×k W 7→ F(∆−1(W ×k W )) = F(W )) and

∆−1 : Ch((D̂X)k)→ Ch(Âff(X)k), G 7→ (U 7→ colim∆(U)⊆W×kW G(W ×K W ) ∼= G(U ×k U))

form an isomorphism of categories.

2. We have ∆∗(OX ⊗ OX) ∼= OX×kX and ∆−1(OX×kX) ∼= OX ⊗ OX . In particular, the above
isomorphism yields an isomorphism

LModOX×kX
(Ch((D̂X)k)) ∼= LModOX⊗OX

(Ch(Âff(X)k)).
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3. Both ∆∗ and ∆−1 preserve all three classes of fibrations, cofibrations and weak equivalences
in the presheaf categories as well as the left module categories.

4. For any commutative k-algebra A, the adjunction ˜(−) ⊢ ΓSpec(A) between complexes of A-
modules and complexes of presheaves of OSpec(A)-modules is a Quillen adjunction. In addition,
˜(−) preserves acyclic fibrations.

5. The previous statement remains true if we consider ˜(−) as a functor from complexes of A⊗kA-
modules to complexes of presheaves of OSpec(A)-modules on the site DSpec(A).

Proof. Statement 1. is true by construction of the functors.
For 2., simply note that OX×kX(W ×k W ) ∼= OX(W )⊗k OX(W ) ∼= (OX ⊗OX)(W ).
For 3., note that we get two adjoint equivalences ∆−1 ⊣ ∆∗ and ∆∗ ⊣ ∆−1. Clearly both ∆−1 and
∆∗ preserve acyclic fibrations, and hence both also preserve cofibrations. Since DX is isomorphic
as a site to Aff(X), the sheaf topos (D̃X)k also has enough points and hence we can check weak
equivalences at stalks. But at the same time, the only points in the sheaf topos on DX are of the
form ∆(x) for x ∈ X, and (∆∗F)∆(x)

∼= Fx and (∆−1G)x ∼= Gx, proving that both ∆−1 and ∆∗
preserve weak equivalencs.
For 4., first note that this is indeed an adjunction. To see this, let M be a complex of A-modules
and consider a map M → F(Spec(A)). If U = Spec(B) is an affine open of X = Spec(A), then
we get a restriction map F(X)→ F(Spec(B)) which is a map of A-modules. But F(Spec(B)) is a
B-module, and hence we get a map F(X)⊗A B → F(Spec(B)). We can hence construct a map

M̃(Spec(B)) ∼=M ⊗A B → F(X)⊗A B → F(Spec(B)).

of B-modules. Now note that ˜(−) sends quasi-isomorphisms to pointwise weak equivalences: If
M → N is a quasi-isomorphism of complexes of A-modules and U = Spec(B) ⊆ Spec(A) is an
affine open, then in particular B is flat over A and therefore −⊗AB preserves quasi-isomorphisms.
Hence (̃M)(U) = M ⊗A B → N ⊗A B = Ñ(U) is again a quasi-isomorphism. Further, we already
know that the global sections functor preserves acyclic fibrations. This shows that the above
adjunction is Quillen. Now if M → N is an acyclic fibration, then so is M ⊗A B → N ⊗A B. This
finishes the proof.
For 5., just note that everything in the proof of 4. still works.

Proof of theorem 5.46. Let P
≃
−−−↠ OX be a cofibrant resolution. The OX ⊗ OX -module P is

bifibrant and HomOX⊗OX
(−,−) is a right Quillen bifunctor, implying that QHomOX⊗OX

(P,P) is
again fibrant in Ch(Âff(X)k). We hence get a weak equivalence

RΓU (QHomOX⊗OX
(P,P)) ≃ HomOX⊗OX

(P,P)(U) ∼= HomOU⊗OU
(P|U ,P|U )

We then have the following chain of weak equivalences

HomOU⊗OU
(P|U ,P|U ) ∼= HomOU×kU

((∆U )∗(P|U ), (∆U )∗(P|U ))
∼= HomOX×kX |U×kU

(∆∗(P)|U×kU ,∆∗(P)|U×kU ).

By the above lemma ∆∗P is again bifibrant, and (∆∗P)|U×kU is fibrant. We can therefore use
proposition [Hin05, 1.7.3] with a choice of cofibrant resolution P ′ ≃

−−−↠ (∆∗(P))|U×kU to get weak
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equivalences

HomOX×kX |U×kU
((∆)∗(P)|U×kU , (∆)∗(P)|U×kU )

≃−→ HomOX×kX |U×kU
(P ′, (∆)∗(P)|U×kU )

≃←− HomOX×kX |U×kU
(P ′,P ′)

Note that (∆∗P)|U×kU
≃
−−−↠ (∆U )∗OU ∼= Ã is again a trivial fibration, and therefore P ′ ≃

−−−↠ Ã is
a cofibrant resolution in OU×kU -modules. Now let P

≃
−−−↠ A be a cofibrant resolution of A as an

Ae-module. Then P̃ is a cofibrant OU×kU -module, and we hence get a weak equivalence P̃ ≃−→ P ′

between bifibrant objects. Therefore,

HomOU×kU
(P ′,P ′)

≃−→ HomOU×kU
(P̃ ,P ′)

≃←− HomOU×kU
(P̃ , P̃ )

∼= HomA⊗A(P, P ).

This proves that RΓU (z(ÕX)(a)) ≃ z(Ã)(a) as complexes of k-modules. Recall that RΓU is lax
symmetric monoidal, and therefore we get an induced evaluation map

QHomOX⊗OX
(U)⊗ P(U)→ R(QHomOX⊗OX

(U)⊗ P(U))→ P(U)

But P(U) ≃ OX(U) ∼= A ≃ P , so this is in fact equivalent to the evaluation map

HomA⊗A(P, P )⊗ P → P

of the center of A. This shows that the above equivalence is indeed an equivalences of E2-algebras.

5.3 Recovering polydifferential operators as the center of OX

Now suppose that X is also smooth. In this case, there is another definition of Hochschild co-
homology developed by M. Kontsevich in [Kon03] given by the hypercohomology of the sheaf of
polydifferential operators Dpoly(X) ∈ Ch(Shk(X)). If U = Spec(A) ⊆ X is an affine open, then

Dpoly(X)n(U) = {f ∈ Homk(A
⊗n, A) : f is a differential operator in each factor}

⊆ Homk(A
⊗n, A) ≃ Cn(A,A).

The sheaf of polydifferential operators inherits the structure of a homotopy Gerstenhaber algebra
from the Hochschild cochain complex. It is quasi-coherent as an OX -module, and therefore fibrant
in the local projective model structure on affine opens. We want to show that the sheaf of polyd-
ifferential operators is indeed a model of the center of OX , including the E2-algebra structure. We
first make a comparison on the level of homotopy sheaves.

Theorem 5.54. Let X be a smooth, quasi-compact, separated scheme over k. We have an equiva-
lence

QDpoly(X) ≃ z(ÕX)(a)

in the ∞-category LModÕX
(Sh∞) of ÕX-modules.
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It suffices to show this equivalence for the sites of affine opens, since they yield an equivalent
∞-category. Since ι∗z(ÕX)(a) ≃ QHomOX⊗OX

(P,P), it suffices to show

ι∗Dpoly(X) ≃ HomOX⊗OX
(P,P)

as presheaves of OX -modules. In the following we will suppress the restriction to affine opens.

Let O be an associative algebra in complexes of sheaves. If F ,G are sheaves of left O-modules,
recall that RHomO(F ,G) = HomO(F ,J ) for some K-injective resolution J of G in the catgory
of sheaves of left O-modules. Let ∆ : X → X ×k X be the diagonal. We have already used the
adjunction ∆−1 ⊣ ∆∗ induced by this in lemma 5.53 above, but we now want to consider the full
site of affine opens on X ×k X instead of the smaller site DX , and we also consider sheaves instead
of presheaves. In particular, the map ∆−1 : Ch(Sh(Aff(X ×k X))k) → Ch(Sh(Aff(X))k) is given
by the presheaf version followed by sheafification. We then have ∆−1∆∗ ∼= id since X is separated.
Denote by

a
⊗ the tensor product of sheaves.

Lemma 5.55. 1. We have a local quasi-isomorphism of complexes of presheaves

HomOX⊗OX
(P,P) ≃ RHom

OX

a
⊗OX

(OX ,OX)

2. If F and G are sheaves, then ∆∗HomOX

a
⊗OX

(∆−1F ,G) ∼= HomOX×kX
(F ,∆∗G).

3. If OX
≃−→ I is a K-injective resolution in sheaves of OX

a
⊗OX-modules, then ∆∗OX → ∆∗I

is a K-injective resolution in OX×kX-modules.

Assuming this lemma, we can prove the theorem as follows.

Proof of theorem 5.54. By [Yek01, Corollary 2.9] we have a local weak equivalence

∆∗Dpoly(X) ≃ RHomOX×kX
(∆∗OX ,∆∗OX).

We then get the following chain of local weak equivalences

∆∗RHom
OX

a
⊗OX

(OX ,OX) = ∆∗HomOX

a
⊗OX

(OX , I)
∼= ∆∗HomOX

a
⊗OX

(∆−1∆∗OX , I)
∼= HomOX×kX

(∆∗OX ,∆∗I)
≃ RHomOX×kX

(∆∗OX ,∆∗OX)

≃ ∆∗Dpoly(X)

where in the second to last step we used 5.55(3.). Now note that ∆−1 preserves local weak equiva-
lencs, and therefore

RHom
OX

a
⊗OX

(OX ,OX) ≃ Dpoly(X).

Together with 5.53(1.) this finishes the proof.
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Proof of lemma 5.55. For 1., let α : OX ⊗ OX
≃−→ OX

a
⊗ OX be the unit of the sheafification

adjunction. This is a weak equivalence of dg algebras in presheaves, and therfore induces a Quillen
equialvalence

LModOX⊗OX
(Ch(Âff(X)k)) LMod

OX

a
⊗OX

(Ch(Âff(X)k))
α∗

α∗

⊣ .

We therfore get the following chain of weak equivalences

HomOX⊗OX
(P,P) ≃ HomOX⊗OX

(P, α∗OX)
∼= Hom

OX

a
⊗OX

(α∗P,OX)

≃ Hom
OX

a
⊗OX

(α∗P, I)
∼= Hom

OX

a
⊗OX

((α∗P)a, I)

≃ Hom
OX

a
⊗OX

(OX , I)

= RHom
OX

a
⊗OX

(OX ,OX).

The 2. statement is standard.
For the 3. statement, note first that OX and I are both fibrant in the local projective model
structure, and the presheaf version of the ∆−1 ⊣ ∆∗ adjunction is Quillen for this model structure
on the affine open sites, so ∆∗OX → ∆∗I is again a local weak equivalence. Further ∆−1 is exact,
and therefore preserves acyclic complexes. Therefore, if S is an acyclic OX×kX -module, then

HomOX×kX
(S,∆∗I) ∼= Hom

OX

a
⊗OX

(∆−1S, I)

is acyclic, proving that ∆∗I is K-injective.

Let B•(OX) denote the OX⊗OX -module U 7→ B•(A). We have a surjective map B•(OX)→ OX
given by multiplication. Hence for a projective resolution P

≃
−−−↠ OX of OX as an OX ⊗ OX -

module, we get a lift P → B•(OX). We get an evaluation map

ι∗Dpoly(X)⊗ B•(OX)→ ι∗OX
coming from the fact that Dpoly(X) is affine locally a subcomplex of the Hochschild complex. This
lifts to a map

Qι∗Dpoly(X)⊗ P P

ι∗Dpoly(X)⊗ B•(OX) OX

≃

and it is clear from the proof of theorem 5.54 that this map corresponds to the evaluation map

QHomOX⊗OX
(P,P)⊗ P → P.

It therefore makes QDpoly(X) into a center of ÕX . In particular, this equips the sheaf of polydif-
ferential operators with a new E2-algebra structure in the ∞-category of sheaves on X. Applying
the derived U -sections functor for an affine open U = Spec(A), we obtain an E2-algebra struc-
ture on RΓU (QDpoly(X)) ≃ Dpoly(A). As a final step, we want to compare this to the classical
Ger∞-algebra structure.
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5.4 The Ger∞-structures on an E2-algebra
Combining theorem 5.46 and 5.54, we see that for a smooth separated quasi-compact scheme X
and an affine open U = Spec(A) ⊆ X we have a zig-zag of quasi-isomorphisms of C∗(E2)-algebras

Dpoly(A) ≃ HomA⊗A(B∗(A), A),

and the later C∗(E2)-algebra structure recovers the classical Gerstenhaber algebra structure on
homology. In particular, the C∗(E2)-algebra structure on Dpoly(A) also recovers the classical Ger-
stenhaber algebra structure in homology. To compare this to the classical Ger∞-algebra structure
on polydifferential operators coming from the braces-algebra structure, we need to recall the con-
struction of the zig-zag between the Ger∞-operad and the C∗(E2)-operad.

Proposition 5.56. For any choice of a Drinfeld associator realized as an isomorphism of operads
D : P̂ aB(k)→ Grp(P̂ aCD), we have the following zig-zag of weak equivalences of dg operads

C∗(E2)→ C∗(|Π1E2|)← C∗(|P̂ aB(k)|) D−→ C∗(|Grp(P̂ aCD)|)→ B∗U(t)← Ger ← Ger∞.

The induced isomorphism on homology makes the following diagram commute

H∗(Ger∞) H∗(E2)

Ger Ger

∼=

id

∼= φD

where φD sends the bracket to λ · [γ] for D = (λ,Φ).

Proof. The first part of the zig-zag is given by the adjunction Π1 ⊣ | · | between topological spaces
and groupoids as described in [Pet14]. The fact that associators are precisely maps from P̂ aB(k)

to Grp(P̂ aCD) is proved in [CiL24]. The map from C∗(|Grp(P̂ aCD)|) to the Bar complex of
the completed universal enveloping algebra of the Drinfeld-Kohno Lie algebra is given by the map
PaCD → U(t) sending PaP to zero. The map Ger → B∗U(t) is described in [Tam03]. In particular,
all parts of the zig-zag are known explicitly, and to show that the square commutes it suffices to track
the generating 2-ary operations ∪ and [·, ·] of Ger∞. The cofibrant replacement map Ger∞ → Ger
is the identity of 2-ary operations. The map Ger → B∗U(t) sends the bracket to t12 ∈ t2 and the
product to 1 ∈ k. The map Grp(P̂ aCD) → U(t) by construction sends H := t12 · id12 to t12, and
1 ∈ B0U(t) corresponds to 12 ∈ C0(Grp(P̂ aCD)). On the other side of the zig-zag, the unit map
of the fundamental groupoid adjunction sends p ∈ C0(E2(2)) and γ ∈ C1(E2) to their respective
equivalence classes, and PaB → Π1E2 hits p with the object 12 and [γ] with the composition R̃ ◦R
where R is the generating braid and R̃ = (21) ·R. The problem is hence reduced to understanding
the relationship between H and the image of R̃ ◦ R under the associator. To this end, recall that
if X = 1 · τ12 then

D(R) = exp

(
λt12
2

)
·X.

Since D is an operad morphism, we also have D(R̃) = exp(λt12/2) · X̃ where X̃ = 1 · τ21. In
particular,

D(R̃ ◦R) = exp(λt12) · id12.
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Finally note that the degree 1 part of this is given by λt12 · id12 since t12 has weight 1. This shows
that the map

C∗(|P̂ aB(k)|) D−→ C∗(|Grp(P̂ aCD)|)

sends R̃ ◦R to λH, proving the proposition.

On the other hand, the classical Ger∞-structure on Dpoly(A) is obtained from the Braces-algebra
structure. In particular, Tamarkin proved in [Tam98] that for a choice of associator D we have a
morphism of dg operads ΨD : Ger∞ → Braces making the diagram

H∗(Ger∞) H∗(Braces)

Ger Ger

∼=

id

ϕD

commute where ϕD sends the bracket to Missing parts!

Now let D ∈ AlgC∗(E2)(Ch(PSh(X))) be a rectification of QDpoly(X) ∈ AlgE2
(Sh∞(X)). Using

[BM03, Theorem 4.4] and the above zig-zag, we obtain a Ger∞-algebra in the symmetric monoidal
model category of complexes of presheaves; by abuse of notation denote this again by D. In
particular, we have a zig-zag of weak equivalencesD ≃ Dpoly(X) as complexes of presheavs. Without
loss of generality, we may choose D to be fibrant. Then for U = Spec(A) affine open, RΓ(U,D) ≃
D(U) is a Ger∞-algebra in complexes, which by theorem 5.46 is quasi-isomorphic to the Ger∞-
algebra structure induced by the same procedure on a rectification of the center of A. In particular,

D(U) ≃ Dpoly(A) ∈ AlgGer∞(Ch(k)),

where the Ger∞-algebra structure comes from the following.

Corollary 5.57. Let A be a commutative regular k-algebra. Then by theorem 5.54, QDpoly(Spec(A))
admits an E2-algebra structure in the∞-category of sheaves on Spec(A). Let D ∈ AlgGer∞(Ch(Sh(Spec(A))))f
be obtained by the above zig-zag of dg operads. Then

D(Spec(A)) ≃ Dpoly(Spec(A))(Spec(A)) = Dpoly(A) ∈ AlgGer∞(Ch(k)).

The identity on Dpoly(A) lifts to an Ger∞-morphism between this Ger∞-structure and the one
coming from Dpoly(A) ≃ z(Ã). Both of these yield the classical Gerstenhaber algebra structure on
Tpoly(A).

5.5 Comparison to the classical homotopy Gerstenhaber algebra struc-
ture on polydifferential operators

For a smooth scheme X, the classical proofs of Deligne’s conjecture equip Dpoly(X) with a Ger∞-
algebra structure, and a Gerstenhaber algebra structure on hypercohomology. Unfortunately, we
do not have enough information about the new Ger∞-algebra structure on D to get the following.
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Conjecture 1. Let D be a fibrant-cofibrant representative of the center Gerinfty-algebra structure
for a smooth scheme X. Then the map

D → Dpoly(X)

induced by the zig-zag of quasi-isomorphisms on the level of complexes of presheaves lifts to a
Ger∞-quasi-isomorphism if we equip Dpoly(X) with the classical Ger∞-algebra structure coming
from Braces and Tamarkin’s map.

Related to that, we would at least like the following statement, which we were not quite able to
proof in the global case.

Conjecture 2. The above quasi-isomorphism of Ger∞-algebras induces an isomorphisms of Ger-
stenhaber algebras on hypercohomology

H∗(X,D)→ H∗(Dpoly(X)).

This would enable us to use [CVdB10, Theorem 1.3] to get a formality result for this new Ger∞-
algebra structure, and also access the action of the Grothendieck-Teichmueller group on formality
morphisms developed in [DRW15].

While we cannot prove the global statement, [DP15, Corollary B.3] at least yields the statement
in the case of an affine space.

Corollary 5.58. Let X be an affine space. Then the identity map of Dpoly(X) extends to a Ger∞-
morphisms between the center Ger∞-algebra structure and the classical one.

Proof. Consider the Ger∞-algebra structure on Tpoly(A) transferred via the HKR map from the
center Ger∞-algebra structure on Dpoly(A). By [DP15, Corollary B.3] and the fact that we get
the correct Gernstenhaber algebra in cohomology, the identity on polyvector fields lifts to a Ger∞-
morphism. We hence get a diagram of Ger∞-quasi-isomorphisms

Tpoly(A)
Shouten Tpoly(A)

center Dpoly(A)
center

Tpoly(A)
Tamarkin

Dpoly(A)
Tamarkin

id

id

HKR

HKR

.

This proves the claim.

47



A The endomorphism ∞-category
We want to show that our endomorphism ∞-category C⊗a ×M M/M agrees with Lurie’s defini-
tion [Lur17, Definition 4.7.1.1]. This will show that our endomorphism ∞-category is the underly-
ing category of a monoidal ∞-category.

Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. In particular, q exhibitsM := Cm
as left-tensored over the monoidal ∞-category C⊗a . Construct an ∞-category M⊛ as the fiber
product

C⊗ ×LM⊗ (N(∆op)×∆1) C⊗

N(∆op)×∆1 LM⊗

q

γ

.

In particular,M⊛ comes equipped with a coCartesian fibration p :M⊛ → N(∆op)×∆1. We have

M⊛
[0],0 = C⊗ ×LM⊗ {[0], 0} ≃ Cm =M,

since the functor LCut : N(∆op)→ LM⊗ sends [0] to (⟨1⟩, {1}) = m. Consider the diagram

M⊛ ×∆1 {1} C⊗ ×LM⊗ (N(∆op)×∆1) C⊗

N(∆op)× {1} N(∆op)×∆1 LM⊗

{1} ∆1

q

γ .

Then the upper right hand side square is a pullback by definition, the lower left hand side square
is a pullback and the left hand side rectangle is a pullback, again by definition. By the pasting
law, the upper left hand side square is a pullback, and hence, again by the pasting law, the large
upper rectangle is a pullback. The lower horizontal arrow of this rectangle agrees with the map
Cut : N(∆op)→ LM⊗, so

M⊛ ×∆1 {1} ≃ C⊗ ×LM⊗ N(∆op).

But in the diagram

C⊗a ×Assoc⊗ N(∆op) C⊗a C⊗

N(∆op) Assoc⊗ LM⊗

q

Cut

both squares are pullbacks, so the rectangle is as well, and we get

M⊛ ×∆1 {1} ≃ C⊗a ×Assoc⊗ N(∆op),

which is the A∞-monoidal ∞-category corresponding to the monoidal ∞-catgory C⊗a . Call this
A∞-monoidal category C⊛a . Then p exhibits M as left-tensored over C⊛a in the planar sense.
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Proposition A.59. Let q : C⊗ → LM⊗ be a coCartesian fibration of ∞-operads. Let p :M⊛ →
N(∆op)×∆1 as above. Then the ∞-category Ca[M ] from definition 2.5 is equivalent to the endor-
mophism ∞-category of M as defined in [Lur17, Definition 4.7.1.1].

Proof. Under γ : N(∆op)×∆1 → LM⊗, the map

a : ([0], 0)→ ([1], 0)

sending the point in [0] to 0 ∈ [1] maps to

LCut(a) : (⟨2⟩, {2})→ (⟨1⟩, {1})
1 7→ 1

2 7→ 1.

Interpreting (⟨2⟩, {2}) as (a,m) and (⟨1⟩, {1}) as m, this map corresponds to the unique element

ϕ ∈ MulLM({a,m},m).

Similarly, the map

b : ([0], 0)→ ([1], 0)

sending the point in [0] to 1 ∈ [1] maps to

LCut(b) : (⟨2⟩, {2})→ (⟨1⟩, {1})
1 7→ ∗
2 7→ 1.

This map corresponds to the unique element

ψ ∈ MulLM({m},m).

Therefore, to give an enriched morphism of M is equivalent to giving a diagram

M
α←− X β−→ N

in C⊗ such that

1. q(α) = LCut(a),

2. q(β) = LCut(b), and

3. β is inert, i.e. q-coCartesian.

Unpacking this, M andN are objects inM, andX = (C,M ′) is an object in C⊗(a,m) ≃ Ca×Cm
1, while

α : (C,M ′)→M and β : (C,M ′)→ N are morphisms in C⊗ lifting ϕ and ψ respectively. Since q is
coCartesian, there is a q-coCartesian lift for ϕ andX = (C,M ′), namely the map (C,M ′)→ C⊗M ′.
Hence, the data of α is equivalent to a map C ⊗M ′ → M in M. Similarly, there is q-coCartesian

1This holds because of [Lur17, Proposition 2.1.2.12]
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lift for ψ and X = (C,M ′), namely the map (C,M ′) → M ′. Hence the data of β is equivalent to
a map M ′ → N in M, and since β is supposed to be q-coCartesian as well, this map has to be an
equivalence. Hence, the ∞-category Ca[M ] as defined in [Lur17, Definition 4.7.1.1] is equivalent to
the ∞-category with objects given by pairs (C ∈ Ca, η : C ⊗M →M), which is better known as

Ca ×MM/M .
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