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1 Introduction
The classical PBW-Theorem states that the associated graded algebra to the universal enveloping
algebra of a finite dimensional Lie algebra is in fact simply the symmetric algebra on the underlying
vector space. In this note we will explore the theory of A. Braverman and D. Gaitsgory aiming to
explain this theorem in the context of the combinatorics of inhomogeneous quadratic algebras. We
will also see some examples from algebraic geometry illustrating how the associated graded algebra
is a form of linearization procedure.

2 Basic definitions
We start by defining filtered and graded objects, and explaining their relationship. Throughout
these notes, let k be a field of characteristic zero. All k-algebras are assumed to be associative but
not necessarily commutative unless stated otherwise. All tensor products are over k.

Definition 2.1. Let A be a k-algebra.

• A descending filtration on A is a family of submodules

A =: F0A ⊇ F1A ⊇ F2A ⊇ . . .

such that for all i, j ≥ 0 we have FiA · FjA ⊆ Fi+jA.

• An (exhaustive) ascending filtration on A is a family of submodules

F 0A ⊆ F 1A ⊆ · · · ⊆ A

such that
⋃

i≥0 F
iA = A and for all i, j ≥ 0 we have F iA · F jA ⊆ F i+jA.

A filtered algebra is a k-algebra A equipped with a descending or ascending filtration.



Example 2.2. (a) Let R be a commutative k-algebra and I ⊴ R an ideal. Then we have the
I-adic (descending) filtration on R

R ⊇ I ⊇ I2 ⊇ . . . .

(b) Let V be a finite dimensional k-vector space and P ⊆ k ⊕ V ⊕ V ⊗2 a subset. Consider the
tensor algebra on V

T (V ) :=
⊕
i≥0

V ⊗i.

Then P generates an ideal I = (P ) ⊴ T (V ) and we have a projection

π : T (V )→ T (V )/I.

The k-algebra A := T (V )/I inherits an (ascending) filtration by setting

F iA := π

⊕
j≤i

V ⊗j

 .

Important cases of this situation are given by the universal enveloping algebra of a finite
dimensional Lie algebra and the Clifford algebra of a quadratic form.

A descending filtered algebra carries a canonical topology such that the filtered pieces FiA are
neighborhoods of 0 ∈ A. This topology is Hausdorff if the filtration is separated, i.e. if lim←−FiA = 0.
In this case, we can use the filtration to talk about Cauchy sequences.

Definition 2.3. Let A be a k-algebra equipped with a separated descending filtration {FiA}i≥0.
The completion of A is given by

Â := lim←−A/FiA.

This is again equipped with a descending filtration

FiÂ := ker
(
Â→ A/Fi

)
∼= lim←−

j≥i
Fi/Fj ,

which is always separated since limits commute with limits. In particular, Â is always Hausdorff
and complete in the classical sense with respect to the above Cauchy sequences. We get a map

A→ Â

with kernel lim←−FiA. We call A complete if this map is an isomorphism.
Remark 2.4. Another way to understand completeness of the topology induced by a filtration is
the following: For each i ≥ 0 we have a short exact sequence

0→ FiA→ A→ A/FiA→ 0,

and we have an induced exact sequence

0→ lim←−FiA→ A→ Â→ lim
←

1FiA→ 0.

If A is complete, then the arrow A→ Â is an isomorphism, and therefore both lim←−FiA and lim
←

1FiA

vanish.
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Example 2.5. If we complete the integers with respect to the (p)-adic filtration for some prime
p ∈ Z, we get the p-adic integers Ẑp.

Filtered objects carry a lot of extra structure, and can hence be difficult to work with. A simpler
type of object is given by graded algebras.

Definition 2.6. A graded algebra is a k-algebra A equipped with a decomposition

A =
⊕
i≥0

Ai

such that Ai ·Aj ⊆ Ai+j .

In particular, any graded algebra carries a "trivial" ascending filtration given by

F iA =
⊕
j≤i

Aj .

Given an algebra with a descending filtration, we can form the associated graded algebra

gr(A) :=
⊕
i≥0

FiA/Fi+1A.

This is a much simpler object than the original filtered algebra, and in particular loses all topological
information. To illustrate this, note that if the filtration is separated, we always have

gr(Â) ∼= gr(A).

To understand in which way taking the associated graded simplifies the algebra structure, consider
the multiplication on gr(A): If x̄ ∈ gr(A)i and ȳ ∈ gr(A)j with representatives x ∈ FiA and y ∈ FjA
respectively, we have

x̄ · ȳ = x · y mod Fi+j+1A.

This multiplication "cuts off" all of the higher order terms and only keeps the "leading term" of the
original product. We may hence view the associated graded as a homogenization or linearization
of the original filtered algebra.

Example 2.7. (a) Let X be a Noetherian scheme and x ∈ X(k) a point. Then we have a local
ring OX,x with maximal ideal mx, and we take the mx-adic topology on OX,x. The associated
graded

gr(OX,x) =
⊕
i≥0

mi
x/m

i+1
x

is the ring of global sections of the tangent cone TCx(X) of X at x. Note that gr(OX,x)1 =
mx/m

2
x = (TxX)∗ generates this graded algebra, and we hence get a map

S((TxX)∗)→ gr(OX,x)
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which yields an inclusion

TCx(X) ↪→ TxX

of the tangent cone into the tangent space. If x is a regular point, then OX,x is a domain,
and therefore the mx-adic topology is separated. In this case, the associated graded of OX,x

agrees with the associated graded of the completion, which by the Cohen Structure Theorem
is isomorphic to a formal power series ring in dimTxX variables. In particular, in this case
the above map is an isomorphism.

(b) If A = T (V )/I as before, we have

gr(A) ∼= T (V )/LH(I),

where LH(I) is given by the leading homogeneous terms of elements in I. To see this, note
that

F iA/F i−1A ∼= (
⊕

j≤i V
⊗j)/(

⊕
j≤i−1 V ⊗j+(I∩

⊕
j≤i V

⊗j)).

3 Graded deformation theory
In the previous chapter we have seen that the multiplication in the associated graded of a filtered
algebra differs from the original multiplication by "higher order terms". In this sense, the multipli-
cation of the filtered algebra can be viewed as a perturbation of the multiplication in the graded
algebra. We now want to make this precise.

Let A be a k-algebra with ascending filtration {F iA}i≥0. We can always construct a family of
filtered k-algebras interpolating between A and its associated graded. To see this, let t be a formal
parameter of degree 1 and define

A :=
⊕
i≥0

F iA · ti ⊆ A[t].

This is commonly called the Rees algebra of A, or Blow-up algebra in the context of algebraic
geometry. Note that A is a graded k[t]-module, and (F iA · ti) · (F jA · tj) ⊆ F i+j · ti+j , so we indeed
get a graded k[t]-algebra. In particular, we have an inclusion k[t] → A, and we will view A as a
family over the affine line A1

k = Spec(k[t]). One immediately sees the following properties of the
Rees algebra.

Lemma 3.8. For each λ ∈ k, the quotient A/(t − λ)A is a filtered k-algebra via the image of the
filtration associated to A under the quotient map.

• If λ = 0, we get A/tA ∼= gr(A).

• If λ ̸= 0, we get A/(t− λ)A ∼= A.

In particular, for all λ ∈ k we have the same associated graded of the fiber over λ. We say the
associated graded family of A is constant.

This construction is an example of a more general concept.
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Definition 3.9. Let A be a graded algebra and t a formal parameter of degree 1.

• A graded deformation of order i of the algebra A is a graded k[t]/ti+1-algebra structure on
A′ := A⊗ k[t]/ti+1 such that A′/tA′ ∼= A as graded algebras.

• A graded deformation of A is a graded k[t]-algebra structure on At := A ⊗ k[t] such that
At/t ∼= A as graded algebras.

If At is a graded deformation of A, then as k[t]-modules At
∼= A[t], and if µ : At ⊗k[t] At → At is

the multiplication of the k[t]-algebra structure, the restriction

A⊗A→ A[t]⊗k[t] A[t]
µ−→ A[t]

is given by

a⊗ b 7→ ab+ µ1(a⊗ b)t+ µ2(a⊗ b)t2 + . . .

with µi : A⊗A→ A of degree −i. This follows directly from the condition At/t ∼= A. In particular,
we see that we get back the original multiplication on A by discarding all "higher order terms" in
t.

The condition that At be associative as an algebra imposes constraints on the maps µi. These
conditions are called obstructions and just like in the non-graded case, they live in the Hochschild
cohomology of the algebra.

Definition 3.10. Let A be a graded algebra and M a graded A-bimodule. The graded Hochschild
cohomology of A with coefficients in M is given by

HH∗(A,M) := Ext∗A⊗Aop(A,M)

where the Ext is computed in the category of A-bimodules. This can be computed as the cohomology
of the complex

Ci
gr(A,M) :=

⊕
j∈Z

Homk(A
⊗i,M)j

with Homk(A
⊗i,M)j the degree j maps, and the differential given analagously to the ungraded

case.

Proposition 3.11 ( [BG96], prop. 1.5). • The set of isomorphism classes of first order defor-
mations of A is isomorphic to HH2

−1(A,A).

• The obstruction to lifting a deformation of order i to a deformation of order i + 1 lies in
HH3

−i−1(A,A)

Graded deformations have the following nice property, which follows from the same calculation as
example 2.7(b).

Lemma 3.12. Let At be a graded deformation of A. If λ ∈ k, the fiber At/(t−λ)At over λ inherits
the structure of a filtered algebra, and its associated graded

gr(At/(λ− t)At) ∼= A

is isomorphic to the original algebra A.
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4 PBW-Theorems
We now return to example 2.2(b) and further analyze the structure of the associated graded. Again,
let V be a finite dimensional k-vector space, and P ⊆ k ⊕ V ⊕ V ⊗2 = F 2(T (V )) with I = (P ). In
example 2.7(b) we have seen that the associated graded of the filtered algebra

A = T (V )/I

is isomorphic to the quotient

gr(A) ∼= T (V )/LH(I)

by the leading homogeneous terms of the elements in I. But there is in fact a simpler way to pro-
duce a homogeneous quadratic algebra from P : Instead of first generating the full ideal and then
taking leading homogeneous terms, one could instead just consider the leading terms of P itself.

Let p : k ⊕ V ⊕ V ⊗2 → V ⊗2 be the projection onto the homogeneous degree 2 component, and let
R = p(P ) be the homogenization of P . Then

B := T (V )/(R)

is a graded algebra, and since (R) ⊆ LH(I) we get a canonical surjection

B = T (V )/(R)→ T (V )/LH(I) ∼= gr(A).

Definition 4.13. We say that A = T (V )/(P ) satisfies the PBW-property with respect to P if this
surjection is an isomorphism.

Example 4.14. Let g be a finite dimensional Lie algebra and consider the universal enveloping
algebra

U(g) = T (g)/(P )

with

P = {v ⊗ w − w ⊗ v − [v, w] : v, w ∈ g} ⊆ g⊕ g⊗2.

Then

R = {v ⊗ w − w ⊗ v : v, w ∈ g} ⊆ g⊗2,

and therefore

T (g)/(R) = S(g)

is the symmetric algebra on g. The PBW-property gets its name from the following classical
theorem.
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Theorem 4.15 (Classical PBW-Theorem). The symmetrization map

S(g)→ U(g)

x1 · · · · · xn 7→
1

n!

∑
σ∈Sn

xσ(1) · · · · · xσ(n)

induces an isomorphism of graded algebras

S(g) ∼= U(g).

In other words, U(g) satisfies the PBW-property with respect to P as above.

Such PBW-theorems yield a very simple description of the associated graded. We would hence like
to know

Question: How can we check whether A = T (V )/I satisfies the PBW-property with respect to some
P with (P ) = I?

The answer to this question was, at least partially, given in A. Braverman and D. Gaitsgory’s paper
"Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type". The rest of this note will
be concerned with explaining their strategy to this problem. First note

Lemma 4.16 ( [BG96], Lemma 0.4). Suppose A satisfies the PBW-property with respect to P .
Then

(1) P ∩ F 1(T (V )) = 0.

(2) (F 1(T (V )) · P · F 1(T (V ))) ∩ F 2(T (V )) = P .

Recall that a homogeneous quadratic algebra is called a Koszul algebra if its Koszul complex provides
a projective resolution of A an A-bimodule. This is equivalent to the followig statement.

Lemma 4.17 ( [BG96], Prop. A.2). A homogeneous quadratic algebra is Koszul if and only if for
all graded A-bimodules M ,

HHi
j(A,M) = 0 if i < −j.

We can now state the main theorem of Braverman-Gaitsgory

Theorem 4.18 ( [BG96], Theorem 4.1). Let A = T (V )/(P ) and suppose that B = T (V )/(R) is
a Koszul algebra. Then A satisfies the PBW-property with respect to P if and only it P satisfies
conditions (1) and (2) above.

The idea behind the proof of this theorem is to find a graded deformation Bt of B such that the
fiber over 1 ∈ k is given by A. Then by Lemma 3.12 we automatically get

B ∼= gr(Bt/(1− t)Bt) ∼= gr(A).

The reason for requiring that B be a Koszul algebra lies in the fact that these have very restricted
Hochschild cohomlogy, and therefore fewer obstructions to lifting finite order deformations. In
particular
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Proposition 4.19 ( [BG96], Prop. 3.7). Let A be a Koszul algebra.

• Let i > 2. Then for any deformation of A of order i there is at most one lift to an order i+1
deformation.

• If i > 3, there exists a lift of any order i deformation of A.

Sketch of a proof for Theorem 4.18. If P satisfies condition (1), there exist maps α : R → V and
β : R→ k such that

P = {x− α(x)− β(x) : x ∈ R}.

We can identify α with a choice of first order multiplication map µ1 and β with a choice of second
order multiplication map µ2. Condition (2) ensures that this µ1 is a Hochschild 2-cocycle and that
the first obstruction (involving µ1 and µ2) vanishes. This condition also implies that we can find
a µ3 such that the second obstruction vanishes. By proposition 4.19, there then exists a lift to a
deformation over k[t].

Finally, we want to use theorem 4.18 to prove the classical PBW-Theorem.

Proof of the classical PBW-Theorem. Recall that we have P = {v ⊗ w − w ⊗ v − [v, w] : v, w ∈ g}
and R = {v ⊗ ww ⊗ v : v, w ∈ g}. In particular, α(v ⊗ w − w ⊗ v) = [v, w] and β = 0. Condition
(1) states that P can not contain an element that lies in F 1(T (V )). The only element of P that
would not intersect g⊗2 is [v, v] in the case v = w, and thus we see that this condition is equivalent
to the antisymmetry of the Lie bracket.
Braverman-Gaitsgory show that condition (2) can be expressed in terms of the maps α and β. In
particular, in the case β = 0, it is equivalent to

(i) im(α⊗ id− id⊗ α) ⊆ R on R⊗ g ∩ g⊗R,

(ii) α ◦ (α⊗ id− id⊗ α) = 0.

An element of R⊗ g ∩ g⊗R is a linear combination of elements of the form

v = x⊗ y ⊗ w − y ⊗ x⊗ w − x⊗ w ⊗ y + y ⊗ w ⊗ x+ w ⊗ x⊗ y − w ⊗ y ⊗ x,

and we have

(α⊗ id− id⊗ α)(v) = [x, y]⊗ w + [w, x]⊗ y + [y, w]⊗ x− (x⊗ [y, w] + y ⊗ [w, x]⊗ w ⊗ [x, y])

= [x, y]⊗ w − w ⊗ [x, y] + [w, x]⊗ y − y ⊗ [w, x] + [y, w]⊗ x− x⊗ [y, w].

This lies in R due to the Jacobi identity

[[x, y], w] + [[w, x], y] + [[y, w], x] = 0.

The same identity also ensures condition (ii), as

α([x, y]⊗ w − w ⊗ [x, y] + [w, x]⊗ y − y ⊗ [w, x] + [y, w]⊗ x− x⊗ [y, w])

= [[x, y], w] + [[w, x], y] + [[y, w], x].

Since the symmetric algebra is indeed Koszul, this finishes the proof.
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