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1 Introduction

The objective of studying the representation theory of various algebraic structures most notably
includes the possibility to recover information about the structure itself by examining its actions
on better understood objects like modules or vector spaces. This gives rise to the notion of a
representation, which is defined as a concrete realisation of an algebraic structure in form of a
collection of operators on some space. Now the natural question arises as to what extend these
representations determine the structure they represent, and in many cases the answer is that in-
deed all the information of the algebraic structure is encoded by its representation theory.

One of the easiest instances of this phenomenon is given by Pontryagin duality, which recovers
an abelian locally compact topological group from the its group of characters. In 1938, Tadao
Tannaka proved a similar theorem for compact but not necessarily abelian groups in his article
"Uber den Dualitéitssatz der nichtkommutativen topologischen Gruppen" |Tan39|, stating that
a compact topological group can be recovered from its category of unitary representations. His
proof was based on the forgetful functor sending an unitary representation to its underlying vector
space, which is an additional structure of all representation categories. This theorem of Tannaka
is the first of a whole class of results known as the Tannaka reconstruction theorems. These are
generalizations of the original theorem to different algebraic structures, all stating that a monoid
object A in a suitable category C can be recovered from the forgetful functor

F: AMod — C

over the module category of A.

In the first part of this bachelor thesis I will give an exposition of the respective theorem in the
category of affine schemes over some field k. This particular Tannaka duality theorem recovering
an affine group scheme from its category of finite dimensional representations was first studied
by N. Saavedra Rivano in [SR72| and later proved by P. Deligne in [Del90|. In the later article,
Deligne also proved a more general version of this reconstruction theorem in particular applying
to affine super group schemes, which are the Z,-graded version of affine group schemes. In a later
work, Deligne then went on to give a criterion classifying all categories that arise this way as the
representation theory of some affine super group scheme [Del02]. A presentation of Deligne’s proof
of this result will occupy the second part of this thesis.

My motivation for investigating these two theorems stems from their significance in quantum field
theory. In particular, I have been made aware of the possible application of Deligne’s classification
of representation categories of supergroups to the theory of supersymmetry in particle physics.
By Wigner’s conjecture stating that particle species of a quantum field theory correspond to the
irreducible representations of its geometric symmetry group, one may use Tannaka-style recon-
struction theorems to draw conclusions regarding these geometric symmetries from the knowledge
of the particle species of the theory. One can then attempt to show that every sensible collection
of particle species is precisely of the form required by Deligne’s classification theorem, implying
that supergroups form the most general symmetry structure of physical quantum field theories,
and thus providing an intrinsic mathematical motivation for a supersymmetric extension of the
standard model. This quest has been carried out in the third part of this article.

Notation. Unless stated otherwise, I will assume that algebras over some field or ring usually
denoted by k are commutative and unital, and all mophisms of algebras are assumed to be unital.
I will call structure preserving maps in a given category simply "morphism" instead of the often
more conventional "homomorphism". Categories are denoted in bold font except for chapter
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where tensor categories are denoted by calligraphic letters. The hom-sets of a category C are

denoted by Homg(—, —). In particular, I will use the following categories
Symbol Objects Morphisms
Set Sets Functions
Vecty Fin. dim. vector spaces over k Linear maps
Sch Schemes Homomorphisms of locally ringed spaces
Alg, Algebras over k Algebra homomorphisms
RMod (Left) modules over R Module homomorphisms
Comod(C (Right) comodules over C Comodule homomorphisms
Rep(G) Fin. dim. lin. representations of G G-equivariant linear maps
GSet G-sets G-equivariant functions
sVect;, Fin. dim. super vector spaces over k Even linear maps
sAlg, Superalgebras over k Even algebra homomorphisms
‘Hilb Complex Hilbert spaces Bounded linear maps
Repy (G) Unitary representations of G Bounded G-equivariant linear maps
on complex Hilbert spaces
C*Alg. Unital C*-algebras over k Unital *-homomorphisms
sHilb Complex super Hilbert spaces Even bounded linear maps

Equivalence of categories is denoted by "~", and (not necessarily natural) isomorphisms are de-

noted by "~".
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2 Categorical preliminaries

Before we begin with the actual content of this thesis, I will give a brief survey on the categor-
ical techniques used. In particular, since some of the definitions are inconsistent throughout the
literature, I will clarify the notions used in the following sections.

2.1 Background

I will assume that the reader is familiar with basic category theory, in particular with the concept
of limits and colimits as well as adjunctions. All of these category theoretical preliminaries can
be found in Mac Lane’s classical book [ML78|. I will further presume knowledge of commutative
algebra and the theory of affine schemes.

The aim of this bachelor thesis is to classify categories which arise as linear representation categories
of some kind of group. Therefore, the categories we will encounter are all designed to mimic
the category of (finite dimensional) vector spaces over some field. This category has two major
structures: its hom-spaces also have a vector space structure in a canonical way, and it is equipped
with a tensor product and duals. These two structures can be generalized to abstract categories,
yielding the notions of an abelian category and a monoidal category respectively.

2.2 Abelian categories

Definition 2.1. A category enriched over the category of abelian groups is called abelian if

e it has a zero object, i.e. an object which is initial and terminal,

e it has finite biproducts,

e every morphism has a kernel and a cokernel, and

e every monomorphisms is a kernel and every epimorphisms is a cokernel.
Let k be a field. An abelian category is said to be k-linear if all its hom-spaces are k-vector spaces,
and composition is k-bilinear.

I will frequently write "direct sum" instead of "biproduct", since this is the usual name in categories
related to the category of vector spaces over some field.

Definition 2.2. A functor F' : A — B between abelian categories is called additive if all the maps
F : Homa (X,Y) —» Homp(F X, FY) are morphisms of abelian groups. Analogously, a functor
between k-linear categories is called k-linear if these maps are linear maps.

In an abelian category we have the notion of an exact sequence. In particular, a short exact
sequence in an abelian category is a concatenation of morphisms

0-X%v5Szo0

such that a is monic, b is epic and im(a) = ker(b). In this case X is a subobject of Y, and we have
7 ~ Y/Xﬂ A morphism of two exact sequences) - X - Y -7 —-0and0 > X -Y' - 7 -0
is a morphism Y — Y” that restricts to the identity on X and induces the identity on Y. A short
exact sequence as above is called split if it is isomorphic to the exact sequence

0-X->X®Z—->7Z-0
with the morphisms given by the inclusion and projection coming from the biproduct diagram.

Definition 2.3. A non-zero object X of an abelian category is called simple if 0 and X are its
only subobjects.

LIf X is a subobject of Y, one denotes by Y /X the cokernel of the inclusion X — Y as a subobject.
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This notion is well known from the representation theory of finite groups. There, a simple represen-
tation is usually called irreducible, and we have Schur’s lemma stating that a morphism between
irreducible representations is either zero or an isomorphism. A version of this lemma also exists in
the more general setting.

Lemma 2.4 (Schur’s lemma). If X and Y are two simple objects of an abelian category C, then
any non-zero morphism X — Y is an isomorphism. In particular, if X is simple then Hom (X, X)
s a division ring.

Proof. If f: X — Y is a morphism, then the kernel of f is a subobject of X, and thus is all of X
or zero. In the first case we get f = 0, and in the second case f is monic, so it implements X as
a subobject of Y. Simplicity of Y then yields X ~ Y and f is an isomorphism. The second claim
follows directly from the fact that addition and composition of endomorphisms make Home (X, X)
into a (non-commutative) ring, and simplicity entails that every morphism has an inverse under
composition. L]

Corollary 2.5. If C is abelian k-linear for an algebraically closed field k and every hom-space is
finite dimensional over k, then for every simple object X we get Home(X, X) = k. In particular,
in this case all isomorphisms between simple objects are multiples of the identity.

Proof. This follows directly from the above proposition and the fact that the only finite dimensional
division algebra over an algebraically closed field k is k itself: If D is such a finite dimensional
division algebra and x € D, then the inverse closed subring of D generated by x and k is an
algebraic field extension over k, and hence equal to k. O

In abelian categories, we also have a generalization of the dimension of a vector space, called the
length of an object.

Definition 2.6 (Finite length). A Jordan-Holder series of length n of an object X in an abelian
category is a chain of inclusions as subobjects

0=Xoc X, S CX,=X

such that X,;/X;_; is simple for all ¢ = 1,...,n. Given a Jordan-Holder series, we say that X
contains Y with a multiplicity m if the number of values ¢ for which X;/X; 1 ~ Y is equal to m.
An object is called of finite length if it admits a Jordan—Holder series.

Jordan and Holder showed that if an object admits a Jordan—Holder series, then any such series
admits every simple object with the same multiplicity, and in particular any two such sequences are
of the same length. The length of an object is then defined as the length of one of its Jordan—-Hélder
series.

2.3 Monoidal categories

Definition 2.7 (Monoidal category). A monoidal category is a quintuple (C,®, a,I,l,r) where C
is a category, ® : C x C — C is a bifunctor called the tensor product, a is a natural isomorphism
called the associativity constraint with components axyz : (X ®Y)®Z - X Q@ (Y ® Z), I
is an object of C, and [ and r are natural isomorphisms with components I[x : I ® X — X and
rx : X®I — X respectively, called the unit constraints such that the following diagrams commute
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WRX)® (Y ®2)

aw,x,y®idzl Tidw(@ax,y,z
We(XeY)eZ — e (X8Y)®2)
(XQQY Ly XeUI®Y)
Tx(m A@ly
XY

To form the 2-category of monoidal categories we also need a notion of a monoidal functor and
monoidal natural transformation. Monoidal functors should preserve the tensor product structure,
and thus the canonical definition is

Definition 2.8. A larx monoidal functor F : (C,®c,a€Ic,l€,rC) - (D,®p,d®, Ip,P,rP)
between monoidal categories is a functor F' : C — D together with a morphism « : In — F(I¢)
and a natural transformation p with components pxy : F(X)®p F(Y) —» F(X ®c Y) such that
the following diagrams commute.

(F(X) ®p F(Y)) ®@p F(2) 2209 p(x) @, (F(Y) @p F(2)

#X,Y@DidF(x)J( J{idF(X)®D#Y,Z
F(X®cY)®p F(2) F(X)®p F(Y ®c 2)
umcy.zl lux,yeacz
F(X®cY)®c Z) PRI F(X ®c (Y ®c Z))

Ip ®p F(XJ 22 F(Io) @ F(X)  F(X) @b F(le) {2 F(X) ®p In
l]FD“‘)l lmc,x HX,IC\L lr,rg(x)
F(X) e F(Ic ®c X) F(Ic ®c X) oo F(X)

A lax monoidal functor is called strong if u and p are both isomorphisms.

A monoidal natural transformation between monoidal functors (F,uf", ur) and (G,u%, ug) is a
natural transformation « : F' — G such that the following diagrams commute.

F(X)®p F(YS*22YG(X) ®p G(Y)

F G
ILX.YJ/ lﬂx Y

(X ®C Y) —_— G(X ®C Y)

AXRCY

/\

) ——a— Gllc)
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A monoidal category is called strict if the natural isomorphisms a,l and r are all equal to the
identity natural transformations. By Mac Lane’s coherence theorem, every monoidal category is
strongly equivalent to a strict one, so one can usually suppress the associativity and unit constraints.

In many of the well known monoidal categories there is a way to "swap" two objects in a tensor
product. For example in the category of finite dimensional vector spaces we have the linear map
VW ->WR,V, v®w— w®uv. The general notion of this is a braiding.

Definition 2.9. A braided monoidal category is a monoidal category equipped with a natural
isomorphism 7 with components 7xy : X ® Y — Y ® X making the following diagrams commute.

ax,y,z

XV)®ZZEE XY eZ2) 22 (ve2)@X

TX,Y®ile lay,z,x

YRX)®Z 3 Y®(X®Z) —— YR (Z®X)

ay,x, idy®Txyz

TXQY,Z

XY ®Z) X% (XY)®Z 2% 70 (X®Y)

idx@‘ry,zl la;}xyy

X®(ZY) == (X®Z2)QY ——= (Z®X)®Y

T id
ax'y.z x,z®idy

A braided monoidal category is called symmetric if T)}}Y = Ty, x for all objects X and Y.

Of course we want a functor between braided monoidal categories to respect the braiding structure.
In particular,

Definition 2.10. A braided monoidal functor between braided monoidal categories is a monoidal
functor (F, p, u) making the following diagram commute

F(X)®p F(Y)TFDMYF(Y) ®p F(X)
ILX,YJ/ F(T}?ﬁy) lﬂy,x
F(X®cY) F(Y ®c X)

A Dbraided monoidal functor between symmetric monoidal categories is not required to satisfy
additional properties. Also, no extra conditions are required of braided monoidal or symmetric
monoidal natural transformations. In perspective of Mac Lane’s coherence theorem, I will usually
not explicitly write down the associativity or unit constraints of (symmetric, braided) monoidal
categories.

Now that we have defined the notion of a tensor product, we can define dual objects. Let X be an
object of some monoidal category C.

Definition 2.11 (Dual object). An object X of C is said to be a right dual of X if there exist
morphisms

ev: XV®X —>1I, coev:I—>XRQXY
called the evaluation and coevaluation, such that the compositions
X STeX 29 (XX )X 55X (XY ®X) %Y, Xl = X, and (1)
XV 35 XY @I @0, y v (X@XY) S (XVeX)@XY 20X, re XY S XY (2)
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are the identity morphism of X and XV respectively. A left dual ¥ X is an object of C together
with morphisms ev: X ® VX — [ and coev : I —» ¥ X ® X satisfying the analogous condition.

Clearly, the unit object I is self-dual with evaluation and coevaluation given by the isomorphism
I®I ~ I. Also, in a bradied monoidal category, a right dual is always a left dual and the other
way around: If ev: XY ® X — I and coev : I — X ® XY make XV a right dual of X, then
evoTx xv : X®XY — I and 7');5 yocoev: ] — XY ®X make XV aleft dual of X. I will in this
case simply speak of "the dual" of X.

Lemma 2.12. If X is a dulaizable object of a monoidal category with zero object, then X®™ = 0
for some n = 0 implies that X = 0.

Proof. 1T will suppress all associativity and unit isomorphisms. We may assume that n > 2. Ten-
soring the composition

XZI®X coev®id x X@X\/@X id x ®ev X®IZX
with X®("_2), we obtain id yem-1) at the one hand by the definition of a dual, and on the other

hand

COeV@idX®(n,1) idX®(n71)®eV
_— _

X®0=1) » [ @ x®—1) X @Xx" XOD @~ x®r=h),

But since X®" = 0, this shows that the identity of X®(™~1 factors trough zero, and must therefore
be the zero morphism. But then X®™~1 — 0, and the result follows by induction. O

If f: X — Y is a morphism between dualizable objects X and Y, we have a dual morphism
fY:YY - XV given by the composition

YV ~YV ®I idy v ®coevx YV ®X®Xv idy v ®f®idx v YV ®Y®XV evy ®idx v I@XV ~ XV,
Definition 2.13. A monoidal category is called rigid if every object has a left and right dual.

As dualizability is a property intrinsic to a monoidal category, it is preserved by monoidal functors.

Proposition 2.14. If (F, u,u) : C — D is a strong monoidal functor and X is a (right) dualizable
object in C with right dual XV, then F(X) is (right) dualizable in D with (right) dual F(XV).

Proof. The two morphisms
F(XY)®p F(X) "%, p(X¥ @c X) 29, 1) “5 Ip and

1

In % F(Ic) 2%, p(X @c X¥) 2255 F(X) ®@p F(XY)

provide an evaluation and coevaluation making F'(X ") the dual of F(X) by functorality of F' and
the duality of X and X. O

The internal hom functor. In the category of sets we have the notion of currying: A function
from a set Z into the set of functions from X to Y is the same as a function from the set Zx X to Y.
This works because the collection of morphisms between two sets is again a set. The generalization
of this concept is called internal hom.

Definition 2.15. Let C be a symmetric monoidal category. An internal hom of C is a functor
[—,—]: C°" x C — C such that for every object X of C we have an adjunction

(_®X) = [X, _]u
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i.e. there are isomorphisms
Home(Y ® X, Z) ~ Home (Y, [X, Z])
natural in Y and Z. If C admits such a functor, it is said to be closed.

Remark 2.16. In a closed monoidal category the tensor product preserves colimits in the first
variable, since all left adjoint functors preserve colimits. Dualy, the internal hom preserves limits
in the second variable, as all right adjoint functors do.

Since the internal hom should be an object of the category behaving like the collection of morphisms
between two objects, we expect to have an evaluation map. For objects X and Y of a closed
monoidal category C, the evaluation map

evalyy : [X,)Y]®X - Y

is defined as the adjoint of the identity id[x y-

In the case of a rigid symmetric monoidal category, we can always construct an internal hom by
(X, Y] =Y®X".

Lemma 2.17. The above defined functor Y Y ® XV is indeed an internal hom. Further, we
also get an adjunction

X'®-)4(X®-)
for each object X.

Proof. For the first part, it suffices to find a natural isomorphism with components
Homc(Y ® X, Z) ~ Home(Y, Z®@ XV).

Such an isomorphism is given by f — (f®idx v )o(idy ®coev) with inverse g — (idz®ev)o(g®Ridx).
That these are in fact inverse to each other follows directly from the identities and . The
isomorphisms for the second adjunction can be constructed very similarly. Send a morphism
f:XY®Y — Z to the composition (idy ® f) o (coev®idy ), and a morphism g: Y - X ® Z to
the composition (ev®idz) o (idx+ ® g). That these are inverse to each other follows again from
the duality identities. O

Since (XV)¥ = X, we have chains of adjunctions

(—®X)H4(—®XV)4(—®X), and
X®-)4X"®—)4(X®-).

Therefore, in the case of a rigid symmetric monoidal category, the tensor product preserves all
limits and colimits in both variables.

Trace and dimension. Let C be a symmetric monoidal category and X a dualizable object
with dual XV. By lemma 2.17 we have isomorphisms

Home (Y ® X, Z) ~ Home (Y, Z® XV)
for all objects Y and Z, and in particular taking Y = I and Z = X we get an isomorphism
Homg (X, X) ~ Homc(I ® X, X) ~ Homc ([, X ® X V).

By the proof of lemma this isomorphism sends an endomorphism f : X — X to the morphism
(f®idxv)ocoevxy : I > X Q@ X".
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Definition 2.18 (Trace and dimension). The trace of an endomorphism f : X — X of a dualizable
object X is given by

tr(f) = (I 22, x @ XV 129, x @ XV ~ XV @ X 25 [) € Ende(]).
The dimension of a dualizable object X is the trace of its identity morphism
dim(X) = tr(idx) = (evx o 7x,xv 0 coevy).

Proposition implies that strong monoidal functors preserve traces and dimensions. The in-
teraction between tensor product and trace is described by the next proposition and can be found
in [PS14} cor. 5.10].

Proposition 2.19. If C is a symmetric monoidal category and X and Y are dualizable objects,
then for two endomorphisms f : X — X andg:Y — Y we have

tr(f ®g) = tr(f) o tr(g).
Corollary 2.20. If X and Y are dualizable objects of a symmetric monoidal category, we have

dim(X ®Y) = tr(idx ®idy) = tr(idx) o tr(idy ) = dim(X) o dim(Y).

2.4 Internalization

Categorical internalization is the process of transferring an algebraic structure that is typically
given by a set with some additional structure to an object of any category that possesses the
required operations.

The most simple instance of this process is the notion of a monoid object in a monoidal category.

Definition 2.21. Let C be a monoidal category. A monoid internal to C is an object M of
C together with morphisms m : M ® M — M and e : I — M making the following diagrams
commute.

MQM® M XS vre M TQM 9 prom Bv® prer

md | [ k z\l; /

MM —— M

A morphism of two internal monoids (M, mur, epr) and (N, my, ex) in C is a morphism f : M — N
in C such that the two diagrams

MM ¥ NoN I My 0

N N

MﬁN

commute.

For example, a monoid internal to the category of sets is a usual monoid, and a monoid internal
to the category of abelian groups is a (non-commutative) unital ring. A monoid internal to the
opposite category C°P of some monoidal category C is called comonoid internal to C. In particular,
a comonoid internal to C is an object C' in C together with morphisms A : C — C®C ande: C — I
making the diagrams

10
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C—2 L, 0QC C
1ot ot
J{A J{idc®A / \
ceC 2 cgoC IQC —— CRC — C®I
e®ide ido®e

commute. Given the additional structure of a braiding, we can define what it means for an internal
monoid or comonoid to be commutative.

Definition 2.22. Let C be a symmetric monoidal category. An internal monoid (M, m,e) of C
is called commutative if

MM —2 s MM

commutes.

A internal cocommutative comonoid is defined analogously. A good example is the category of
vector spaces, where an internal commutative monoid is just an algebra, and an internal commu-
tative comonoid is a cogebra. One can build different structures by iterating internal monoids and
comonoids; for example, a bialgebra is nothing but an internal commutative monoid in the cate-
gory of internal cocommutative comonoids in Vecty, and in fact a commutative monoid internal
to some category is just an internal monoid in the category of internal monoids of this category.
We have an induced monoidal structure in the category of commutative monoids (or cocommuta-
tive comonoids) internal to some symmetric monoidal category C: For two such monoid objects
(M,mpr,en) and (N,mpy,en), (M QN, my @mpy, enr ®en) is again an internal monoid, and the
tensor unit has a monoid and comonoid structure given by the isomorphism I ~ I ® I.

Proposition 2.23. Laz monoidal functors send internal monoids to internal monoids.

Proof. Let (F,u,pu) : (C,®c) — (D,®p) be a lax monidal functor and (A4, m,e) a monoid in
(C,®c). Then

F(e
Ip S F(Ic) 2,

F(A) ®p F(A) 4 P(Ac A) 22 Fa)

F(A) and

are an unit and multiplication making F'(A4) a monoid in (D, ®p). O
The next step is defining modules over these internal monoids and comonoids.

Definition 2.24. Let C be a monoidal category and (M, m,e) an internal monoid in C. An
internal module over M is an object X of C together with a morphism p: M ® X — X making
the diagrams

MOM®X M vex IQX Y% vex
m®idxl lp X lﬂ
M®X ——5— X X

commute. A morphism of internal M-modules (X, p) and (Y, o) is a morphism f : X — Y such
that

M®X 25 X

idM@fl lf

M®Y —— Y

11
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commutes.

The difference between a group and a monoid is the existence of inverses. To define what it means
to be an inverse, one needs the structure of a diagonal map, i.e. a notion of "copying" an object,
and thus monoidal categories are no longer sufficient to define internal groups.

Definition 2.25. A cartesian category C is a monoidal category whose monoidal structure is given
by the categorical product and whose unit is a terminal object.

In a cartesian monoidal category, we have for every morphism I — X a unique morphism X — X
given by precomposition by the unique morphism from X to the terminal object, and for each
object X we have a diagonal morphism Ax : X — X ® X induced by the identity morphism on
X and the universal property of the product. If f : I — X is a morphism, I will also denote the
unique induced morphism X — X by f. In this setting we can now define an internal group.

Definition 2.26. Let C be a cartesian category. A group internal to C'is an object G of C
together with morphisms m : G® G — G, e: I — G and inv : G — G such that (G,m,e) is a
monoid internal to the monoidal category C and

G2, GG era

ac|

GG ¢ m
inv@idcl
G®G _ G

commutes.

A group object internal to the category of sets is again just a usual group, and a group internal to
the category of topological spaces yields the concept of a topological group. In the next section I
will work with group objects in the category of affine schemes as a cartesian category, and this will
give the notion of an affine group scheme. Note that in a cartesian category, the unique morphism
X — I and the diagonal map Ax make every object X into a commutative comonoid. Another
important structure is that of a Hopf monoid.

Definition 2.27. Let C be a symmetric monoidal category. A bimonoid internal to C'is an object
of C equipped with a monoid and comonoid structure in a compatible way, i.e. the comultiplication
and the counit are morphisms of monoids or the multiplication and the unit are morphisms of
comonoids. A Hopf monoid internal to C'is a bimonoid H together with a morphism s : H — H
making the following diagram commutes.

H < I . H
Al idp®s Tm
H®H ————({HQ®H
s®id gy

Note that a Hopf monoid in the opposite category is the same as a Hopf monoid in the original
category. In a cartesian category, we can compare the notion of a Hopf monoid to that of a group
in two different ways: We can choose the multiplication of the group to correspond to either the
multiplication or the comultiplication of the Hopf monoid.

Lemma 2.28. The tensor product in the category of commutative monoids internal to some sym-
metric monoidal category is the same as the coproduct of this category.

12
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Proof. Let (M, mps,en) and (N, mpy,en) be two internal commutative monoids. We have mor-
phisms

M~MIMEN, \ro N and
N~TQN @ yron

such that for every internal commutative monoid (X, m,e) and monoid morphisms f : M — X,
g : N — X, the morphism m o f ® g makes the following diagram commute.

M N
&1\4021\7 eMy
M®N
I
f mo f®g 9
~
X

This follows directly from the right hand side diagram in the definition of monoid morphism
It remains to show that this is the unique monoid morphism with this property. Suppose
h: M®N — X is another monoid morphism making the above diagram commute. The fact that
h is a morphism of internal monoids is expressed in the commutativity of

1

MONQMON —=5 MOM®N® N @ N

o J»

X®X X

m

Now precomposing this diagram with idy; ®@ey @ep ®idy, the top arrow yields id gy by the right
hand side diagram in the definition of internal monoid and the vertical left arrow becomes
f ® g by assumption. This shows h = mo f®g. O

Proposition 2.29. (a) A cocommutative Hopf monoid in a cartesian category C is the same as
a group object in C.

(b) A commutative Hopf monoid in a symmetric monoidal category C is the same as a group
object in the opposite category of the category of commutative monoids in C.

Proof. "(a)" In a cartesian category, every object has a unique structure of a cocommutative
comonoid with comultiplication the diagonal map and counit induces by the universal property of
the terminal object, and every morphism is a morphism of comonoids. Therefore, a cocommutative
bimonoid in C is the same as a monoid object. For any endomorphism of such a cocommutative
bimonoid, the commutativity of the diagram in definition [2:27] is then equivalent to the com-
mutativity of the diagram of definition [2.26] with the antipode s corresponding to the inversion
morphism.

"(b)" By lemma the tensor product in the category of commutative monoids in C is just
the coproduct of this category. Therefore, its opposite category is cartesian, and we can use part
(a) to state that a group object here is the same as a cocommutative Hopf monoid. But such a
cocommutative Hopf monoid is clearly equivalent to a commutative Hopf monoid in C. O

A commutative Hopf monoid in the category of vector spaces recovers the usual notion of a Hopf
algebra. I will enlarge upon the theory of commutative algebra of internal objects in section [5.4]

13
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2.5 The ind-category

One often encounters the situation of working with a category of "finite" objects of some type,
but still needing knowledge of how larger objects behave. For example, the tensor algebra of a
finite dimensional vector space is no longer finite dimensional, since it is an infinite direct sum. In
this case, one possible solution is to freely adjoin the required objects to the category in question.
Denote by [C°P, Set] the category of presheaves over a category C.

Proposition 2.30. Let C be a small category. The Yoneda embedding y : C — [C°P, Set] exhibits
the presheaf category [C°P, Set] as the free cocompletion of C. In particular, for any cocomplete
category D and functor F : C — D there is a functor F : [C°P, Set] — D unique up to unique

natural isomorphism such that F preserves all colimits and F o y~F.

A proof of this statement can be found in [Dug98| prop. 2.2.4]. I will not be interested in all
colimits, but only filtered colimits, i.e. colimits of diagrams indexed by small filtered categories.

Definition 2.31. Let C be a small category. An ind-object of C is a filtered colimit of objects in
C, where the colimit is taken in the cocompletion [C°P, Set] of C.

By construction, there exists an ind-object of C for every diagram indexed by a small filtered
category, but these do not have to be objects of C. In particular, taking the index category to
be the one-object category 1, we see that every object X of C is an ind-object as colimit of the
diagram 1 — C sending the object of 1 to X. More generaly, one can always identify an ind-object
with the diagram in C giving the ind-object as its colimit.

To make the ind-objects of C into a category Ind(C), one has to define morphisms between them.
We expect the inclusion C — Ind(C) described above to be fully faithful, and we also expect
objects of C to be compact in Ind(C), i.e. for X in C the representable functor Homy,q(cy (X, —)
should preserve filtered colimits. Therefore, for two ind-objects X and Y viewed as diagrams
X:D—-CandY :E— C we must have

Homlnd(C) (X7 Y) = Homlnd(C) (dggil(rlrjl) Xda ecegg(I]rEl) Ye) (3)

lim Homyp, Xd, colim Y
s Homumace) (Xd, colim Ve)

= I lim Homy, Xd,Y
st colim Homungc) (Xd, Ye)

lim colim Homg(Xd,Ye).
deob(D) ecob(E)

This already determines the morphisms between ind-objects uniquely, and we can therefore make
the following definition.

Definition 2.32. The ind-category Ind(C) of some small category C has the ind-objects of C as
its objects and morphisms according to equation .

If we have additional structure on C, this structure may be transferred to Ind(C).

Proposition 2.33. If C is small and abelian, then its ind-category Ind(C) also is an abelian
category, and the embedding C — Ind(C) is exact. If F : C — C is an additive functor of abelian
categories, then the induced functor Ind(C) — Ind(C') is right (resp. left) evact if F is.

For a proof of this statement see [KS06, section 8.6]. If C is abelian, it also holds that every object
of Ind(C) is the filtered colimit of all its subobjects that lie in C [CB94].

14
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Now suppose that C is rigid symmetric monoidal. Then in particular the tensor product is exact
in both variables, and we obtain a tensor product on Ind(C) by
X®Y = (colim Xd)® (colim Ye)~ colim (Xd®VYe).
deob(D) ecob(E) d,ecob(CxD)

By construction, the tensor unit I of C also is unital for the tensor product of Ind(C). Since we can
check all diagrams in C, this tensor product makes Ind(C) into a symmetric monoidal category.
The rigid structure does not transfer to Ind(C) in this situation. Indeed, it is easy to see that
an object of the ind-category is dualizable if and only if it already lies in C: Suppose that X is
dualizable in Ind(C) with dual XVv. Then since X is the filtered colimit of all its subobjects in
C, there must be a subobject X’ of X lying in C such that the coevaluation coev: I — X @ XV
factors through X’ ® X V. Then the commutative diagram

Coev®ldXX®XV ®X id x ®ev X) _ idX

~ ] ]

XX'eX — X'

shows that idy factors through idy/, and thus we must have X' = X.

3 Affine group schemes

In this section I will state the basic properties of affine group schemes. These will be used in the
following sections to prove the Tannaka duality theorem for affine groups.

3.1 Motivation

Suppose we are given a field k and a k-algebra R. For a free R-module M we can then look at
the group of invertible transformations of unit determinant SL(M), which, upon choice of a basis,
is given as matrix group SL,(R) for n = dim M. The condition of a matrix being in this group
can be written as the vanishing of a polynomial in the entries of the matrix: If we have a matrix
A = (a;;) with entries in R, then this matrix is an element of SL,,(R) if and only if

det(A) — 1 = 2 sgn(0)a14(1) - - - Ano(n) — 1 = 0.

ceS,

Note however that this polynomial is independent from the k-algebra we chose. If we take f €
E[z11,...,Znn] to be the polynomial above replacing a;; by x;;, we can see that for an arbitrary
k-algebra S we have

SL,(S) = Vs(f) := {A = (a;;) € Mat,(S) : f(A) =0}

Any matrix (a,;;) € Mat,, (5) satisfying this condition therefore must be given by the images of the
residue classes z;; of the z;; under some k-algebra homomorphism

k[xu,...,xnn]/(f) — S

In this sense we can view (Z;;) as the universal matrix encoding the properties of the special linear
group of any k-algebra.

This discussion shows that there is a natural generalization of usual groups of this type embracing
the fact that their structure is independent of their concrete realization, and we call these gener-
alized groups affine group schemes. In the case of the special linear group, all the information is
encoded in the k-algebra k[z11, ..., Zns]/(f), which in turn corresponds to some affine subscheme
of A}

15
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3.2 Definition and first properties

Before we can define affine group schemes we first need to investigate some properties of affine
schemes. Let Sch be the category of schemes. By the Yoneda embedding, giving a scheme is
equivalent to giving a contravariant representable functor from Sch to the category of sets, and
we call this functor the functor of points. By looking at affine open covers, it is easy to show
that a scheme is already uniquely determined by the restriction of its functor of points to the
category of affine schemes (see |[EHOO, prop. 6.2]). Therefore, if we are given an affine scheme
X = SpecR, we have Homgcn(Spec S, X) ~ Homging(R,S) and the functor of points of X is
uniquely determined by the covariant functor hf represented by R from Ring to the category
of sets. The same construction works analogously for the category Sch/k of k-schemes, and the
diagram below shows the setting we have now.

Alg?

Specy w

Sch/k Func(Alg,,, Set)

AffSch/k ~ Alg;® ~ repFunc(Alg,, Set)

Definition 3.1. An affine group scheme (over k) is a group object in the category of affine schemes
over k. A morphism of affine group schemes is a scheme morphism that respects the multiplication
law. Analogously, an affine monoid is an internal monoid in the category of affine schemes over k.

For the sake of brevity I will often use the name ’affine group’ when meaning ’affine group scheme’.
By the above considerations we immediately get the following.

Lemma 3.2. The data of the following structures are essentially the same:
(i) An affine group scheme,
(ii) A group object in Alg)®. This is the same as a Hopf algebra over k (see proposition ,
(11i) A group object in the category repFunc(Alg,, Set), which is a representable functor G :
Alg, — Set together with a natural transformation m : G x G — G such that m(R) is a
group structure on G(R) for all k-algebras R.

If not stated otherwise, I will usually take the point of view of an affine group being a representable
functor giving a group structure. The reason is that this way to think about affine groups makes
it the easiest to define a representation theory of such groups. Also, the internal structures in the
functor category Func(Alg,, Set) from k-algebras to sets is sometimes easier to handle than the
explicit description in terms of prime ideals of certain rings.

The next piece of structure is the representing object of a given affine group. For an affine scheme
X = Spec R we have a structure sheaf satisfying Ox(X) = R, and I will adapt the notation used
in the special case of affine varieties in calling Ox(X) the coordinate ring of X. For an affine
group given by a representable functor, the object representing it is exactly the coordinate ring
of the associated affine scheme. For an affine variety, the coordinate ring can be interpreted as
k-algebra of local morphisms to the underlying affine line A;, and in the more general case of an
affine scheme we can still define a type of evaluation of elements of the coordinate ring on points
in the spectrum by defining the value of an element f € R on the point p € Spec R to be the
residue class of f under the projection morphism to R/p. It is therefore reasonable to expect the
representing object of an affine group G to be given by the morphisms from G to some instance of
the affine line.

Construction 3.3. As we have Al = Speck[z], we see that as a functor the affine line is repre-
sented by the polynomial ring in one variable. If R is another k-algebra, we have

Homag, (k[z], R) ~ R,

16
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since every such homomorphism is uniquely determined by the image of x. Since the codomain of
Homaig, (k[x], —) is the category of sets, the image of a k-algebra R stays R as a set, but there is no
k-algebra structure anymore. Therefore, the affine line is simply the forgetful functor of k-algebras.
The transcendent variable x is the universal element mediating the natural transformation between
these two view points.

Definition 3.4. The coordinate ring O(G) of an affine group G is given as a set by
O(G) := Nat(G, A}).
We make O(G) into a ring by defining
(f+9)r:=frEtgr
(f-9r:=fr 9r

for f,g € O(G) and R a k-algebra. Note that we utilized the ring structure on R on the right hand
sides. We further make O(G) into a k-algebra by defining

(cflr=c-fr
for c € k.
It remains to show that this is indeed a representing object for G.

Proposition 3.5. Let G be an affine group with coordinate ring O(G) = Nat(G,AL). Then the
natural transformation

(67 G — HomAlgk (O(G), —)

sending an element g € G(R) to the k-algebra morphism "evaluation at g" is a natural isomorphism
of set valued functors.

Proof. As an affine group, G is representable, so we know that G = Homayg, (A, —) for some
k-algebra A. By the Yoneda lemma we have an isomorphism of sets

¢ : O(G) = Nat(G,A) ~ Nat(Homag, (A, —),AL) ~ AL(A) = A,

and by construction of the algebra structure on O(G), this even is an isomorphism of k-algebras.
I claim that the o defined as above is just the induced natural isomorphism

¢* : Homaig, (4, —) — Homayg, (O(G), —).

The component ¢% sends a homomorphism g : A — R to go¢ : O(G) — R which in turn maps an
element f of the coordinate ring to g(fa(14)) € R. The following commutative diagram coming
from the naturality of f then proves the claim.

HomAlgk (A, A) % A

g*l l‘]
HomAlgk (A, R) T R

O

Definition 3.6. The element a € G(O(G)) corresponding to the natural transformation « via the
Yoneda lemma is called the universal element of G.

17
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Remark 3.7. The natural isomorphism « relates the two different ways to view O(G); as coordinate
ring of the affine variety G and as representing object of the functor G. Take some f € O(G).
Then we get a morphism fr : G(R) — R mapping g € G(R) to fr(g). But at the same time, using
the evaluation morphism, g can be seen as a map ev, : O(G) — R, and we obtain the relation

fr(g) = evy(f).

Remark 3.8. We have a ’trivial’ affine group = given by the functor sending every algebra to the
one-element set viewed as the trivial group. The components of a natural transformation 5 from *
to the affine line are given by an element Si € R for all k-algebras R, and since we have a canonical
inclusion k& — R for every such algebra, naturality shows that 3 is already determined by S € k.
Therefore, the coordinate ring of the trivial affine group is just the underlying field

O(*) = k.

3.3 Affine groups as Hopf algebras

Recall from lemma that an affine group may equivalently be seen as a Hopf algebra. I will now
make this relation more explicit by showing that the group structure on a representable functor G
indeed gives a Hopf algebra structure on the coordinate ring O(G).

The trick when transferring structure from the group to the coordinate ring and backwards is to
once again use the isomorphism « from proposition 3.5

Lemma 3.9. Let ¥ : G — H a morphism of affine groups. Then there is a canonical morphism
U O(H) — O(G) such that

(¥ f)r(9) = fr(¥rY)
for all f € O(H) and g € G(R).

Proof. Let a and 3 be the isomorphisms as in proposition [3.5] for G and H respectively. Then
there is a unique morphism ¥ : Hom(O(G), —) — Hom(O(H), —) making the following square
commute.

G v H

a J{,ﬁ
Hom(O(G), —) 37 Hom(O(H),—)
By the Yoneda lemma, ¥ must be given by some morphism

Ut O(H) — O(G)

such that Ur = (UH)* for all k-algebras R. For g € G(R), f € O(H), commutativity of the above
diagram then yields

FROYRY) = evang(f) = W(evy)(f) = (evg 0 WH)(f) = evy(¥Ff) = (V¥ f)r(g).
O

We can now asses the Hopf algebra structure provided by an affine group. The multiplication map
is a morphism

m:GxG— G,

18
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and the tensor product in the category of k-algebras is indeed the coproduct of this category (see
lemma [2.28). Thus, since the contravariant Yoneda embedding sends colimits to limits, and in
particular coproducts to products, we have EI

Homalg, (A1 ® Az, —) ~ Homayg, (A1, —) x Homaug, (As, —),
and m can be viewed as a morphism
m : Homaig, (O(G) ® O(G), —) — Homaig, (O(G), —).
By the above lemma the induced morphism
A:0(G) - 0(G)RO(G)
then satisfies

(Af)r(91,92) = frR(mR(91,92)) =: fr(91-92) V91,92 € G(R),

if we define (f1 ® f2)r(g9,9") = (f1)r(9)(f2)r(¢’) for elements f1 ® f2 € O(G) ® O(G). By remark
the unit morphism e : x — G yields a morphism ¢ : O(G) — k which by the lemma satisfies

(ef)r(x) = frer*).

We can state this less rigorously but more understandably as ef = f(e), where e denotes the
neutral object of the group G(k). At last, the inversion morphism inv : G — G yields an algebra
morphism S : O(G) — O(G) satistying

(Sfr(g) = fr(invr(9)) =: fr(9™") Vge G(R).

Proposition 3.10. Let G be a representable functor from k-algebras to sets, and letm : GxG — G,
e:* > G and inv : G — G be natural transformations. Then (G, m,e,inv) is an affine group if
and only if the morphisms A, € and S defined as above make O(QG) into a Hopf algebra.

Proof. The functor A — Homag, (A, —) of k-algebras directly translates the diagrams of a Hopf
algebra into those of an affine group. O

3.4 Representation theory for affine groups

Given an ordinary group G, a linear representation of G is defined as a group homomorphism
r:G— Aut(V)

for some vector space V. To generalize this notion to affine groups, we first need to think about a
way to view the automorphism group as an affine group. To this end, let k£ be some commutative
ring with unity, and let R be a k-algebra. Then for each k-module V' we have the R-module
obtained by extension of scalars to R,

Ve =V Qi R.
We now define the endomorphism functor of V' by
End(V) : Alg; — Set, R+— Endy(V) := Endrmod (Vr)-

The effect of this functor on morphisms is given by first restricting to V', then applying the mor-
phism, and then extending to a module morphism again. In particular, if ¢ : R — S is a morphism
of k-algebras,

End(V)(@)(f)(v®s) = s (idv @ ¢)(f(v)).
2If f: A1 > R, g: As — R, write [f, g] for the unique morphism A; ® Az — R given by f and g.
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Remark 3.11. One can show that if V' is finitely generated and projective, then End(V) indeed is
an affine monoid under composition as multiplication (see [Nit04]). In particular, this is always
the case if k is a field and we look at finite dimensional k-algebras. In this special case, upon a
choice of basis, Endy (V) can be viewed as the dimV x dim V matrices with entries in R, and
Aut(V) := End(V)* is just the general linear group functor. We will mainly be concerned with
the case of k being a field.

We are now able to talk about linear representations of affine groups.

Definition 3.12. Let G be an affine monoid. A linear representation of G on a k-module V is a
natural transformation

r: G — End(V)
of monoid valued functors. If G is indeed an affine group, r will have values in Aut(V).

Note that by the way we defined morphisms of affine groups, we could equally well say that r is a
affine group homomorphism.

Remark 3.13. We can directly transfer most of the terminology used in ordinary representation
theory. For example, we call a linear representation of an affine group G on V faithful if all
morphisms 7 are injective, and we call a subspace W of V' a subrepresentation of V', if rg(g)Wg <
W for all k-algebras R and g € G(R).

Equivariant maps are also defined analogously to the case of ordinary groups.

Definition 3.14. A morphism of linear representations w : (V,r) — (V',r') (also called inter-
twiner) is a linear map u : V' — V' such that the diagram

Ve —2 Wh
TR(g)l J{Th(g)
Ve — Wr
commutes for all k-algebras R and g € G(R), where ur denotes the extension of scalars of w, i.e.
up = u®Iidg.

The most important example of linear representation of affine groups is the regular representation.
Recall that for an ordinary group G and k[G] the k-module of functions from G to k (called the
group algebra of i), the regular representation r4 of G on k[G] is given by

ra(9)(f)(h) = f(hg).

For an affine group G, the k-module of functions from G to k is nothing but the coordinate ring
O(G) = Nat(G,Al), so we construct the regular representation of G on the k-vector space O(G).
In particular, the regular representation r4 of G is a natural transformation with component at
the k-algebra R

(ra)r : G(R) — Autrmod (O(G) ®k R).
At this point, it is helpful to talk about the interpretation of O(G) ® R.

Lemma 3.15. The R-algebra O(G) ®y, R is the representing object of the affine scheme G over
R given by restricting the functor G to the category of R-algebras. In particular, we have

O(G) ®x R = Nat(Gr,AL) =: O(Gr).
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Proof. For every R-algebra S and k-algebra morphism ¢ : O(G) — S there is a unique R-linear
extension of ¢ to O(G) ®x R. Thus, Homaig, (O(G), S) ~ Homaig, (O(G) @k R, S), showing that
O(G) ®y R represents Gr. The proof of proposition can be repeated in the same way replacing
k with R, which proves the second claim. O]

Remark 3.16. It is a central fact for the representation theory of affine groups that the representing
object of the functor, the coordinate ring of the underlying affine scheme and the group algebra of
the group all agree. We will see more of that when we examine the relation between representations
of groups and comodules over the corresponding coordinate ring.

We are now able to finish the definition of the regular representation.

Construction 3.17. Let g € G(R), f € O(G), and let ¢ : R — S be an R-algebra structure on
the k-algebra S. Then for x € G(S), define

((ra)r(9)(f))s(z) := fs(z - G(p)(g)).
We can then uniquely extend this construction to f € O(G) ®x R = Nat(Ggr,AL), in particular,

((ra)r(9)(f ®7))s(x) = @(r)fs(z - G(e)(9))-

There is a close connection between actions of an affine group and coactions of its group algebra.
In particular, we have the following remarkable theorem

Theorem 3.18. Let G be an affine monoid over k and V' a k-module. There is a natural one-to-

one correspondence between linear representations of G on' V. and O(G)-comodule structures on V.

In particular, if v is such a representation, the universal element a € G(O(QG)) is mapped to an
element of Endy ) (V') whose restriction to V is a comodule structure, and conversely, if p is an
O(G)-comodule structure, then there is a unique representation r such that the restriction of rr(g)
to V is given by (idy ® evy) o p for all k-algebras R and g € G(R).

Ve Ve 0Q) YE9 ye R

\ lro(c;)(a) J{T'R(g)
Ve, 0(G) AverE Ver R

Proof. First show that the above operations are indeed inverse to each other. Clearly, if p is a
morphism of k-modules V' — V ®; O(G), then (idy ® ev,) o p = p, as the map corresponding to
a is the identity by definition. Now suppose we are given a natural transformation of set valued
functors r : G — End(V'). Then for se R, g€ G(R) and ve V,

s+ (idy ® evy) o o (a) (v) = End(V) (ev) (o (a)) (v @ 5) = rale) (0 ® 5)
by naturality of r in evy : O(G) — R.
Next show that r is indeed a natural transformation of group valued functors if and only if the corre-

sponding p is a O(G)-comodule structure. By definition, group multiplication in Homayg, (O(G), R)
is given by mp(f, g) = [f,g] o A. Therefore, for g, h € G(R), the action of rg(gh) on V is given by

VL V@, 06) 28 v e, 0(G) @, 0(G) LB, y gy g

while the action of rr(g)rr(h) is given by

idv®[evg ,idR]
R

VLV, 0G) L, v g, R 229 v g, O(G) @k R V ® R,
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which is the same as
VA Ve 06 29 v g 0(G) @, 0(G) el v o R,

It is now easy to see that rr(gh) and rr(g)rr(h) agree for all k-algebras R and all g, h € G(R) if
and only if the following diagram commutes

V— 5 Ve 0G)

PJ lidv®A

At last, for the neutral element e € G(k) the identification ev. = € with € the counit of O(G) shows
that ri(e) = idy g,k if and only if the following diagram commutes

Ve Ve 0G) 2% vy k

\ J/idv@kk

V ® O(G) Py V &k

Since this is exactly the counit diagram for V', this completes the proof. O

As an example, look again at the regular representation. An O(G)-algebra structure on a k-algebra
R is given by a morphism ¢ : O(G) — R, which is the same as giving a group element h € G(R)
by ¢ = evy. Then by construction the morphism (r4)o(q)(a) acts on f € O(G) by

((ra)o@ (@)(f)r(9) = fr(g - Glevi)(a)) = fr(gh) = (Af)r(g, h),

since G(evy)(a) = g by naturality of a. Therefore, the regular representation of G corresponds to
the O(G)-comodule O(G) with coaction A.

The special role of the regular representation in the theory of affine groups is the same as in ordinary
representation theory: It is a faithful representation which contains every other representation of
the group. In particular, we have the following.

Proposition 3.19. Let G be a flat affine monoi(ﬂ over k, (V,r) a linear representation of G with
associated O(G)-comodule structure p, and

V @ 0(G) “22, v ®, O(G) @ O(G)

the free O(Q)-comodule structure on V. Then p:V — V ®; O(G) is an injective homomorphism
of representations of G.

Proof. The coassociativity diagram making (V, p) an O(G)-comodule is the same diagram stating
that p is indeed a morphism of O(G)-comodules. By the counit diagram of (V, p), the composition
of p with idy ® € is injective, so p must be too. O

3Meaning that the coordinate ring of G is flat as k-module.
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3.5 Categorical formulation

Let (C,A,€) be a cogebra over a ring k. Then the comodules over C together with morphisms of
comodules form a additive category ComodC. The forgetful functor to k-modules is exact if and
only if C is flat, and further if this is the case, then the ComodC is abelian k-linear (in fact even
a Grothendieck category) [Wis75].

A bialgebra structure (m, e) on C defines a monoidal structure on ComodC. If (V, p) and (V’, p')
are comodules over C, then on V ®; V'

idy ®idy @m
_—

V@kv/&p/"/@kc(@kv/@kciV@kvl®kc®kc VerV' ec

is again a comodule structure; the tensor product of (V, p) and (V’, p’). The unit e : k — C ~ k®;,C
provides the tensor unit. In case k is a field, for any finite dimensional k-vector space V we get

HomkMod(V, V ®p C) ~ HOHlkMod(V R VY, C) ~ HomkMod(Vv LCRp VY ),

and thus a right coaction p on V yields a left coaction p’ on V'V. A Hopf algebra structure S on C
then provides a way to turn this into a right coaction again. In particular, the morphism

VYA e VY S VY@ C 8 vy,
is a right coaction on V'V, called the dual comodule structure of p. By construction, the forgetful
functor preserves both the rigid and the monoidal structure.

Now let G be an affine monoid, and let Rep(G) be the category of finitely generated linear repre-
sentations of G. Theorem shows that this cateogory is equivalent to the category of finitely
generated O(G)-comodules, and therefore is a abelian k-linear with an exact forgetful functor in
case G is flat. The equivalence between these two categories respects the monoidal and rigid struc-
ture, as can be checked by direct computation.

The flatness of a cogebra C also ensures that subcomodules over C are well defined. In particular,
if (V,p) is a C-comodule, and W < V is a k-submodule, then we have W ®; C < V ®; C, and we
say that W is a subcomodule of V' if p(W) € W ®j, C. If k is Noetherian and C is a flat cogebra,
then every comodule over C is the filtered union of its finitely generated subcomodules [Ser93].
Therefore, in case that G is a flat affine monoid over a Noetherian ring, every linear representation
of G is the union of its finitely generated subrepresentations.

4 Tannaka duality for affine group schemes

I will now prove the Tannaka duality theorem for affine group schemes, and also give a criterion
for a category to be of the form Rep(G) for some affine group G. This approach is in analogy
with the theory of Pontryagin duality, which describes how to recover a locally compact abelian
group from its group of characters and also classifies the properties of the group in comparison to
its dual group of characters.

4.1 General Tannaka duality

In a suitably well-behaved category, there is a strong connection between an internal monoid and its
category of modules: One can always recover the monoid from only knowing the module category
over it. In particular, if C is a locally small symmetric monoidal category with internal hom and
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all limits, and A is an internal monoid in C, then A is isomorphic to the encﬁ of the composition
of the hom-functor with the forgetful functor F' : AMod — C:

A~ Homg(F (M), F(M)).
M:AMod

This is just a restatement of the enriched Yoneda lemma and can be found in [Bor94] section
6]. Interestingly, in some categories it suffices to only look at the full subcategory of dualizable
("finite") module to recover the monoid, and in these cases one speaks of a Tannaka reconstruction
theorem.

The easiest example is the cartesian category Set of sets, where one can recover a group from the
category of sets equipped with an action of this group.

Theorem 4.1. Let G be a group and write GSet for its category of G-sets. If F': GSet — Set is
the forgetful functor forgetting the group action, then there is a canonical group isomorphism

Aut(F) ~ G.

Proof. First observe that the set of morphisms from G viewed as a G-set to any G-set (X, p) is
isomorphic to X: If f: G — X is such a morphisms, then

f(g) = f(ge) = p(g)f(e),

so one may only choose the image of e freely. Therefore, the forgetful functor F' is represented by
G, and we get

End(F) ~ End(Homgset (G, —)) ~ Homgset (G, G) ~ G

using the Yoneda lemma. O

4.2 The reconstruction theorem

The aim of this section is to discuss the following theorem, which essentially establishes Tannaka
duality between affine groups and their category of finite dimensional linear representations.

Theorem 4.2 (Reconstruction theorem). Let G be a flat affine monoid over a Noetherian ring
k, and let R be a k-algebra. Suppose that for each linear representation (V,rv) of G on a finitely
generated k-module V' we are given an R-linear morphism

MWV R—VeLR
satisfying
(1) AZvegew = Av @ Aw,
(2) N\ = idd)| and
(3) for all G-equivariant linear maps u: V — W we have Ay oug = ug o Ay.

Then there is a unique element g € G(R) such that Ay = (rv)gr(g) for all finitely generated
representations (V,ry).

I will first present a proof of the theorem and then explore its consequences and corollaries. The
proof relies heavily on the following lemma.

4For the definition of an end see [ML78} section 9.5].
5Where k denotes the trivial representation of G.
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Lemma 4.3. Let G be an affine monoid over k, and let u be a k-algebra endomorphism of its
coordinate ring O(G). If the diagram

0(G) —2 0(G) ®: O(G)

UJ/ lido(g)@’u

O(G) —— 0(G) @ 0(G)

commutes, then there is an element g € G(k) such that u = (ra)i(g).

Proof. If u* : Homayg, (O(G), —) — Homaig, (O(G), —) denotes the corresponding natural trans-
formation, then ¥ : G — G given by ¥y = oz;%l ou* o ag satisfies

(uf)r(9) = frR(YRY)

for all k-algebras R and g € G(R) by lemma with a being the natural transformation from
proposition [3.5] Evaluating the two compositions of the diagram we get

(Acu)(f)r(z,y) = (Auf))r(z,y) = (uf)r(zy) = fR(VR(2Y))

and

((i[doe) ®@u) o A)(f)r(z,y) = ((idO(G) ®u) (Z fi®gi>) (z,y) = (Z fi®u9i> (z,y)
7 R 7

R
= > (f)r@) - (ugi)r(y) = (Af)r(z, Try) = fr(z- (VrYy)),
‘ (9i)rR(YRY)

where Af =: Y. f; ® g;. By the commutativity of the diagram, this yields

TrR(YR(2y)) = fr(2(YRY))
for all f € O(G), and thus ¥g(xy) = 2(Vgry) for all z,y € G(R).

Now let e € G(k) and eg € G(R) be the respective neutral elements, and let tg : & — R be the
morphism making R a k-algebra. Then by naturality of U, G(tg) sends ¥y(e) to Yr(er), and we
get

(uf)r(z) = frR(YRZ) = fR(VR(zER)) = fR(Z(VRER)) = fR(2(G(1)(PLe)))
= ((ra)e(Yre)(f))r(z),

so defining g := Uie, we get the desired result. O
Using the lemma the proof of the reconstruction theorem is now straight forward.

Proof of theorem [£:2] Under the given assumptions every linear representation V of G is the union
of its finite dimensional subrepresentations, V' = |, Vi. All the inclusion maps V; — V; n V; are
G-equivariant, and thus by condition (3) we can then glue all Ay, together to form a morphism
Av : V®r R— V ®; R also satisfying all the conditions.

Accordingly, we also have a morphism A4 : O(G) ®; R — O(G) ®¢ R corresponding to the regular
representation 74 of G. The multiplication on O(G) is equivariant for the representations r4 and
74 ®ra, and thus (1) and (3) imply that A4 is indeed a morphism of k-algebras. Analogously,
the comultiplication on O(G) is equivariant for the representations 74 and idp(e)g,r ® 74, and
therefore by (1) and (3) the diagram
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O(G) ® R 2% O(G) ®, R O(G) ®y, R

/\Al J/idO(G)®)\A

OG)®r R = O(G)®r R®, O(G) @k R

commutes. Thus, using the previous lemma on the affine scheme G over R, we get g € G(R) such
that Agq = (TA)R(Q)-

Now let (V,ry) be some finitely generated representation of G. By proposition p:V —
V®i,O(G) is an injective homomorphism of representations, where the representation on V®;, O(G)
is taken to be the tensor product of trivial and regular representation. I just showed that (r_))r(9)
and A(_) agree on the regular representation, and by (2) they agree on the trivial representation
on V. Therefore, they also agree on the tensor product, and then by injectivity of p and (3), we
finally get Ay = (rv)r(g). This proves existence. Uniqueness follows trivially from the fact that
the regular representation is faithful. O

Since every element g € G(R) of an affine monoid defines such a family of morphisms by Ay =
(rv)r(g), the theorem shows that the category of finitely generated linear representations of an
affine monoid G encompasses all the information about the monoid itself, or in other words, we can
recover G from the category Rep(G). This is also the reason this theorem is called reconstruction
theorem.

Now the question arises how we can implement this reconstruction when given a category which
we know to be of the form Rep(G). To this end, note that every such category comes with a
family of forgetful functors

wr : Rep(G) - RMod, (V,ry) v~ V®; R

indexed by k-algebras R. Let End® (wgr) be the monoid of natural endomorphisms of wg respecting
the monoidal structure. These requirements are the same stating that every A € End®(wg) satisfies
conditions (1) and (2) from theorem [4.2] and condition (3) is equivalent to naturality. We thus get
the following

Corollary 4.4 (Tannaka duality for affine monoids). Let G be an affine monoid. For every k-
algebra R, the monoid morphism

G(R) — End®(wg)

which sends g € G(R) to (r(—))r(g) is an isomorphism, and the correspondence is natural in R.
In particular, if End®(w) denotes the functor R v~ End®(wg), we have

G ~ End®(w).

4.3 The recognition theorem

In this section, k is always assumed to be an algebraically closed field of characteristic zero. In
particular, all k-modules are free and End(V") always is an affine monoid. As discussed before, the
category of finite dimensional comodules over some cogebra C is abelian k-linear and comes with
an exact and faithful fiber functor to Vecty. Further, this category is clearly essentially small,
meaning equivalent to a small category, because Vecty, is. I will now prove that every category with
these characteristics is already a representation category; this is called the recognition theorem.
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Definition 4.5. For an abelian category C and an object X, denote by [X] the isomorphism class
of X in C. Also, denote by (X) the full subcategory of C whose objects are subquotients of direct
sums of copies of X. We have a partial order on the isomorphism classes given by [X] < [V] if
(X) c (Y, and since [X],[V] < [X @ Y], for essentially small categories this partial order is a
projective system.

Theorem 4.6 (Recognition theorem for comodules). Let C be an essentially small k-linear abelian
category, and let

w: C— Vecty,
be a k-linear exact and faithful functor. Then there is a cogebra C such that we have an equivalence
C ~ ComodC.

In particular, if C(w) is the cogebra lim . End(w|(x,)", then for every object X the vector space

[X]
w(X) has the structure of a right C(w)-comodule, and w defines an equivalence between C and

ComodC(w).

For the proof of this theorem we first need several preliminary results. Let C and w be as in the
theorem.

Lemma 4.7. 1. For all objects X and Y in C, Homg(X,Y) is finite dimensional over k.
2. The fiber functor w reflects monomorphisms, epimorphisms and isomorphisms.

Proof. The first statement is a direct consequence of the fact that w is faithful. The second
statement is just a standard result on faithful functors (see e.g. [ML78]). O

We will first work in the setting of the category (X). For a set S < w(X), the intersectiorﬁ of all
subobjects Y of X such that S < w(Y) is called the subobject generated by S. In particular,

Definition 4.8. An object Y is called monogenic if it is generated by a single element, i.e. there
is a generator y € w(Y') such that for each Y/ c Y, y € w(Y”’) implies Y/ =Y.

Lemma 4.9. For every monogenic object Y in (X), we have
dimw(Y) < (dimw(X))%.

Proof. Let Y be a subquotient, i.e. we have morphisms ¥V « Y; — X™. If y; € w(Y7) is a
preimage of y € w(Y) and Z is the subobject of Y] generated by y;, then the image of Z in Y
contains y, and is therefore equal to Y. Thus, WOLOG assume that Y < X™ for some m € N,
and suppose that m > dimw(X). Since the generator y of Y lies in w(Y) < w(X)™, we can write
y = (y1,...,Ym) with y; € w(X) linearly dependent. Thus we can find A; € k not all zero such that
> Ay = 0. These \; define a morphism A : X™ — X, which is surjective when pushed down to
Vecty. Therefore we can find a matrix A that extends A to an isomorphism,

)\1”-)\m . m m
(M) e xm

Let N be the kernel of A\. Then w(A) sends w(N) to w(X)™~1, and this is an isomorphism. Since
w reflects isomorphisms, this shows that N ~ X™~1 and y € w(N) implies that ¥ embeds to
X™m=1 We can continue in this fashion until we have m’ € N with Y < X™ and m < dimw(X).
This proves the claim. O

6The intersection of two subobjects is just their categorical product in the poset category of subobjects.
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Lemma 4.10. Let P be a monogenic object in (X ) with largest possible dimw(P), and let p be a
generator of P. Then (P,p) represents w|xy.

Proof. Since w(X) is of finite dimension, the previous lemma shows that dimw(Y) can take on
only finitely many values for monogenic Y, so such a P exists. Since every object in (X can be
written as a subquotient of some direct power of X, it now suffices to show that for every z € w(X)
there exists a unique morphism f : P — X such that w(f)(p) = x.

Uniqueness: Suppose f and g are two such morphisms. Then look at the equalizer

/
E——P (X
g9

Since E is a subobject of P and by construction p € w(E), we must have £ = P and therefore
f=g

Existence: Let @ be the smallest subobject of the product P11 X such that w(Q) contains (p,x).
Since p generates P, the image of the projection onto the first factor is all of P, which implies
dimw(Q) > dimw(P). But we chose P maximal monogenic, and thus this projection actually is
an isomorphism. The image of its inverse under w sends p to (p, x), and composed with the image
of the projection to the second factor we get the desired morphism. O

In particular, this shows that Homg (P, —) is exact and faithful. In other words, P is a projective
generator of C. We are now in the position the make the following definition.

Definition 4.11. Let A := Endc(P) = End(w|(xy) as a k-algebra. For all objects Y in (X),
Home(P,Y) is aright A-module in the canonical way. Since P represents w, w(Y") has the structure
of a left A-module, and we can thus regard w (resp. Homg(P,—)) as a functor from (X) to left
(resp. right) A-modules.

Lemma 4.12. The functor w| xy is an equivalence of categories (X ) — AMod.

Proof. The functor w|x is faithful by definition, so we need to show that it is full and essentially
surjective.
Essentially surjective: For an A-module M, choose a finite presentation

A™ S A 5 M — 0.

Then u can be viewed as a m x n-Matrix with entries in A, and in this manner it also defines
a morphism P™ — P". If Y is its cokernel, the exactness of Homg(P, —) implies that M ~
Homc(P,Y) ~ w(Y).

Full: By the above every object Y of (X ) occurs in an exact sequence

P 5 P S Y 0.
Let Y’ be another object. Then we have

Homg(P™,Y’) = Homg(P,Y')™ ~ Hom anoa (A™, Homc (P, Y"))
= Hom apmoq(Home (P, P™), Homeg (P, Y")),

where the second equality follows from the fact that A is the tensor unit of AMod. Now the
commuting diagram

0 —— Homg(Y,Y') ——— Homg(P",Y') —— Homg/(P™,Y")

| I }

0 —— Homamod (w(Y),w(Y’)) —— Homamod (A", w(Y')) —— Homamoa(A™,w(Y"))
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shows that we have Homg(Y,Y”’) ~ Homanmod(w(Y),w(Y”)), and this isomorphism is given by
Homcg(P, —). O

We can now finally formulate a proof for the recognition theorem for comodules.

Proof of theorem 6] For any object X of C, let Ax := End(w|x) and let Cx := A, which is a
cogebra since A is finite dimensional for all X. Furthermore, a left Ax-module yields a right Cx-
comodule, and lemma shows that the functor w| xy is an equivalence of categories between
(X) and ComodCx. Now if [X] < [Y] for two objects X and Y in C, we have a restriction
morphism Ay — Ax whose dual yields a morphism Cx — Cy. We can then take the directed limit

C(w) := lim End(w|(xy)"
(X1

over these morphisms. Then every w(X) for some object X has the structure of a right C(w)-
comodule, and w is an equivalence of categories between C and ComodC(w) by construction.
This completes the proof. O

On the correspondence between bimodule structures and tensor products. Since we
are not primarily interested in the category of comodules over some cogebra, but rather in the
category of linear representations of some affine group, it remains to find out how this recognition
theorem interacts with the extra structure of the coordinate ring of an affine group in comparison
with a general cogebra. In section [3.5] I showed how a bialgebra structure on a cogebra yields a
monoidal structure on its category of representations. Actually, the converse is also true, as I will
NnOW prove.

For some finite-dimensional k-algebra A and an arbitrary k-algebra R, let wr : AMod — RMod
be the functor sending an A-module M to the free R-module R ®; M.

Lemma 4.13. The canonical map
u: R®p A — Endlwg), ulr®a)py(s®@m)=rs®am
is an isomorphism. In particular, A ~ End(w), where w is just the forgetful functor on AMod.

Proof. 1 will show that the map v : End(wg) — R ®; A sending a natural transformation A to
Aa(1®1) is an inverse to u. Clearly, v ou = idgg, 4, S0 we only have to show wov = idEnd(wg)-
For any A € End(wg) we have Aag,amr = Aa ®idps because A ®; M is a direct sum of copies of
A. Let p: A®y M — M be the multiplication map a ® m — am. Then p is A-linear, and by
naturality of A the diagram

Ru ARy M E%% R, M

)\A®id1V]J/ l)\ M

R®, A®r M m R M
commutes. But starting with 1® 1 ®m € R ®; A ®; M, this means
A(1®@m) = Apy(1@u(l®m)) = (dr@p)(Aa(1®1) @m) = u(Aa(1®1))m (1 ®@m),

so the claim holds. O
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We can also use this result on cogebras. If C is some cogebra, then CV is an algebra, and since
every comodule is the projective limit of all its finite-dimensional subcomodules, we then get

C ~ lim End(w|¢ar) "
[M]

With this in mind, we can prove

Proposition 4.14. There is a one-to-one correspondence between cogebra homomorphisms u :
C — (' and functors F : ComodC — Comod(’ such that wer o F = we. This correspondence is
given by sending u to the functor that sends a C-comodule (V, p) to the C'-comodule (V, (idy ®u)op).

Proof. A natural transformation A € End(wer|¢yy) is already determined by Ay, since A is additive
and naturality then gives the right morphisms for quotient- and subobjects of Y™; and the same
holds for C. Therefore F' determines a morphism F : End(wer|¢rxy) — End(welxy) by F(\)x :=
Arx, which then also gives a morphism

li_r)nEnd(wcz |<FX>) - li_I)nEnd(wc|<X>).
[X] [X]

Since the LHS is a quotient of h_H)l[Y] End(we|¢yy), precomposing with the projection and taking
duals yields the desired morphism C — C’. O

As we want to use this knowledge to look at the correspondence between monoidal structures on
ComodC and bialgbra structures on C, let us apply this proposition to a cogebra C and its tensor
square C ®j, C, which has canonical cogebra structure (A ® A, e ® €). Define

w®w : ComodC x ComodC — Vecty

by (w @ w)((V,p), (W,d)) = V ®; W. Then using the same argumentation as in lemma one
can see that for finite dimensional cogebras C one has End(w®w) ~ C®yC, and therefore in general

(ComodC x ComodC,we ®we) ~ (Comod(C ®, C),weg,c)-
As a result, we finally get the following

Proposition 4.15. There is a one-to-one correspondence between cogebra homomorphisms m :
C ®x C — C and bilinear functors ¢ : ComodC x ComodC — ComodC satisfying ¢(V,W) =
V &k W as vector spaces.

In particular, this correspondence is given by m — ¢™ with ¢™ sending (V, p), (W,0) to V Qi W
with coaction

V@kW@V@)kC@k W&k C >V @ W CQp C ~EWE, /o WRC.

Proof. This is a direct consequence of the above discussion and lemmal[4.13] The second part follows
since (V, p), (W,6) — (V @, W, p® d) is an isomorphism ComodC x ComodC ~ Comod(C ®j
C). O

The additional structure of a category of representations of an affine monoid in comparison to a
category of comodules is precisely the existence on a monoidal structure.

Corollary 4.16 (Recognition theorem for affine monoids). Let C be an essentially small k-linear
abelian category with an exact and faithful fiber functor w : C — Vecty, and let @ : Cx C— C
be a k-bilinear functmﬂ such that

T will write ®(X,Y) as X QY.
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(1) w(X®Y) = w(X) @ w(Y);

(2) There are natural isomorphisms axy,z : (X®Y)®Z - XQ@ (Y ®Z) and 7xy : X QY —
Y ® X whose images under w are the usual associativity and commutativity isomorphisms of
the tensor product of vector spaces;

(3) There is an object I € C such that w(I) = k and we have isomorphisms X @ ~ X ~I® X
whose images are the canonical isomorphisms making k the tensor unit of vector spaces.

Then the cogebra C(w) from theorem has a unique bialgebra structure (m,e) such that ® = ¢™
and the comodule structure on w(I) is given by k 5 C(w) ~ k ®}, C(w).

Proof. The conditions (1)-(3) make sure that w : C — ComodC(w) preserves the structure asso-
ciated with ® : C x C — C. Therefore, this follows directly from proposition O

This is exactly the extension of the recognition theorem [L0] to the case of affine monoids, since
bialgebras are the monoid objects in the category Alg;”. In the last step we want to further extend
the theorem to affine groups. To do this, first note the following.

Proposition 4.17. Let C and C' be symmetric monoidal categories and let F,G : C — C' be
strong monoidal functors. If C and C' are rigid, then every morphism \ : F — G of monoidal
functors is an isomorphism.

Proof. The morphism p : G — F making the diagram

F(XY) 2% G(xY)

gl l:

F(X)Y —2 G(X)¥
(kx)
commute for all objects X in C is an inverse for . O

Finally, we can state the missing condition for the affine monoid in corollary [£.16] to be an affine
group.

Corollary 4.18. Let C and w be as in corollary |4.16. Then the cogebra C(w) belongs to an affine
monoid G, and if C is rigid then G is in fact an affine group.

Proof. Condition (1) of corollary implies that the tensor product on C is symmetric, so we
can use the previous proposition on w : C — Rep(G). Since by the reconstruction theorem we
have G ~ End®(w), this shows that every element of G(R) is invertible for all k-algebras R, and
therefore G is a group. O

While this is a very nice result, the statements of corollary and are still somewhat
disorganized and difficult to grasp. To improve on that, note that the conditions in corollary [£.16]
can be summarized in terms of monoidal categories, since they simply state that the category in
question is symmetric monoidal and that w is functor of monoidal categories. In particular, we
make the following definition.

Definition 4.19 (Neutral Tannakian category). A non-trivial essentially small abelian k-linear
category C is called neutral Tannakian if it is symmetric monoidal with k-bilinear tensor product,
rigid, and equipped with a strong monoidal k-linear exact and faithful functor w : C — Vecty.
Such a functor is called fiber functor.
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Remark 4.20. The condition that C be non-trivial is most often stated as Endc(I) = k for I the
tensor unit. Indeed, if C satisfies all the conditions of definition, we have w(I) = k and since w
is faithful k-linear, Endc () < Endvect, (w(I)) = Endveet, (k) = k is a linear subspace, and then
non-triviality of C implies that it must be a non-trivial subspace. The necessity of this condition
stems from the fact that no group has empty representation theory; there always is a trivial action.

Definition [4.19] enables us to state the results of this section in a more coherent manner. As a final
result, we get

Theorem 4.21 (Recognition theorem for affine groups). Every neutral Tannakian category is
equivalent as symmetric monoidal category to the category of representations of some affine group.
In particular, if w is a fiber functor for the category, the corresponding group is given by

G ~ End®(w).

5 Tannaka duality for affine supergroups

The previous section leaves the question as to when exactly a k-linear monoidal category admits
a fiber functor. It turns out that to answer this question in the most general context, we need to
allow a fiber functor not to the category of finite dimensional vector spaces, but to the category
of finite dimensional super vector spaces, of which the category of usual vector spaces is a full
subcategory. This will lead to the generalization of affine group schemes to affine supergroups.

Throughout this section, let k£ be an algebraically closed field of characteristics zero.

5.1 Super linear algebra and supergroups

We first of all need to investigate the category of super vector spaces and in particular the theory
of algebras in this theory. We start from the very general definition of a graded object.

Definition 5.1. Let S be a set and let C be some category. Then the category of S-graded
objects of C is defined to be the functor category C? of functors from S to C, where § is viewed
as discrete category. In particular, a S-graded object of C is a map X assigning an object X of C
to each element s € S, and a morphism f of S-graded objects X and Y is a family of morphisms
fs X, — Y

If C is rigid, k-linear abelian and symmetric monoidal with tensor unit I, this structure can be
transported to the category of graded objects of C.

Proposition 5.2. If S is a monoid with neutral element e, then we have a tensor product in c®
given by

(X®Y)s* = @ Xa@%)

ab=s

with unit I3 = I and I? = 0 if s # e making C° a monoidal category. If S is a commutative
monoid, this monoidal category is symmetric. If S is a group, then every object in C° has a left
and a right dual, and if it even is an abelian group, then those agree.

Proof. Associativity and unit constraint are directly inherited from C, as well as the corresponding
pentagon and triangle identity. If S is commutative and 7 is a braiding in C, then ab = ba for all
a,be S and

D 7x4.vy
]

(X®Y)s:@Xa®YE7 @Yb®Xa:(Y®X)s

ab=s ba=s
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is a braiding in C%. If S has inverses we can built a right dual object to X by (X¥), = (X))

(analogously for left dual), and a given braiding in C? makes sure that left and right duals agree.
O

If C is abelian, C° inherits the abelian structure by setting
We are particularly interested in the case C = Vecty and S = Z,.

Definition 5.3 (Super vector space, part 1). A Zy-graded object of Vecty, is called a super vector
space. In particular, a super vector space V is given by two finite dimensional vector spaces V}
and Vlﬂ which are called the even and odd component of V respectively. A morphisms of super
vector spaces V and W is simply given by two linear maps fy : Vo — Wy and f1 : V3 — Wi

The category of super vector spaces is clearly equivalent to the category whose objects are finite
dimensional vector spaces V together with a direct sum decomposition V' = V@ V; into two fac-
tors, and whose morphisms are linear maps preserving these decompositions. This is the version
more often encountered in the literature, and I will use this notation from now on. In this point
of view, an non-zero element v of a super vector space V' is called homogeneous if it lies in either
Vo or V1, and for a homogeneous v define |[v| = 0 if v € Vj and |v] = 1 if v € V]. Tt always suffices
to define morphisms of super vector spaces on homogeneous elements only.

Since Zy is an abelian group, we have a natural tensor product making Vect%2 into a monoidal
category, i.e. for super vector spaces V =V @ V; and W = W, @ Wh,

VW =Vo@WodV1W1)® (Vo@W1 @ Vi ® W)

with the brackets indicating the new decomposition. The unit object is the field k viewed as purely
even super vector space, which I will denote by k!l°. However, we choose a different braiding than
the one inherited from the trivial braiding on Vect,. In particular, we choose

v VOW - WRV, v@w— (-1 4)

for homogeneous v € V and w € W. This braiding is often called Koszul rule. The fact that
we choose a non-trivial braiding here, thus making the category of supervector spaces into a
different symmetric monoidal category, is the very foundation of super geometry in mathematics
and supersymmetry in physics.

Definition 5.4 (Super vector space, part 2). Denote by sVecty the k-linear abelian symmetric
monoidal category of super vector spaces over the field k. The dimension of a super vector space
V =V @V, is defined to be dim V| dim V.

Of course the concept of a super vector space (and associated concepts) can be generalized to the
category of possibly infinite dimensional vector spaces. We have an important automorphism of
every super vector space V =V, @ V; given

M:V -V, v (-1l
for homogeneous v € V. It is called the parity automorphism.

Just like in the non-graded case, the next logical step is to look at structures in the category of
super vector spaces. An ordinary k-algebra is a commutative monoid in the category of vector
spaces, and analogously we define

81 will write 0 and 1 here instead of the more appropriate 0 and 1.
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Definition 5.5. A (finite dimensional) superalgebra over k is a commutative monoid in the category
sVect,. In particular it is given by a super vector space A together with a multiplication

m:AQRA—> A, a®b—a-b

and a unit e : k' — A which are both morphisms of super vector spaces and satisfy the usual
identities. By the non-trivial braiding we always get

a-b=(=1)p.q

for homogeneous a,b € A. A morphism of superalgebras is a morphism of super vector spaces
f:A—> Bsuchthat mpo f® f=fomy and eg = foeyu.

Analogously, we can define a super cogebra to be a cocommutative comonoid in sVecty. A super
bialgebra then is a super vector space which is simultaneously a super algebra and a super cogebra
such that the comultiplication and counit are morphisms of super algebras. If we have a super
bialgebra H, an antipode S : H — H which is a morphism of super bialgebras makes H into a
super Hopf algebra if the usual antipode diagram commutes (see section [2.4]).

Ezample 5.6. Let F(X1,...,X,,Y1,...,Yn) be the algebra of non-commuting polynomials in the
variables X; and Yj, i.e. the free k-algebra over these symbols. Then the quotient of this algebra
by the relations

X,‘Xi/ = XilXi, Xl}/] = }/in, YVJ}/J/ = —Y}/}/j, 1= 1,.. ., NG ] = 1,...,m

is a superalgebra over k; the super polynomial algebra in even variables X;, ¢ = 1,...,n and odd
variables Y;, j = 1,...,m. In particular, if this algebra is denoted by sk[X1,..., X,;Y1,..., Y],
we have the decomposition

Sk’[Xl,...,X.,L;Yl,...,Y»,,L]O = {fo —|—Zf]Y[ I = {Zl < e < ir},reven}
I

sk[X1, ..., X Y1, .., Y1 = {ZfJYJ T ={j1 < <js},sodd},
J

with I and J understood as multi-indices and fo, f;,, fj, € k[X1,..., Xy].

Definition 5.7. Let A be a superalgebra over k. A left A-module is a super vector space M
together with a morphism p : A® M — M of super vector spaces satisfying the usual identities.
Such a left A-module can be viewed as an A-bimodule by defining

p(m®@a) = (=D p(a@m)

for a € A and m € M. A morphism of A-modules is a morphism of super vector spaces f : M — N
such that fopy = pyoidga ® f. As in the non-graded case, the category of modules over a
superalgebra is a symmetric monoidal abelian category.

We have seen in section that an affine group is given by a functor G : Alg;,, — Set represented
by some Hopf algebra O(G). Now that I have defined super Hopf algebras, it is natural to generalize
this concept to that of an affine supergroup.

Definition 5.8 (Affine supergroup). An affine supergroup is a group object in the category of rep-
resentable functors from sAlg;, to Set. Equivalently, such a representable functor is a supergroup
if and only if its representing object is a super Hopf algebra.

One of the easiest examples is the super general linear group, which is the automorphism group of
a super vector space k™™ := k" @ k™.
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Ezxample 5.9. For n,m € Ny, let GL,, ,,, be the functor from sAlg,. to Set

Ro @ Ry o { (é g) . A € GL,,(Ro), B € Maty m(R1), C € Matyn(R1), D € GLm(RO)} .

It is represented by the superalgebra obtained by quotienting sk[X11, X12, ..., Xm+nm+n, Y, Z] in
even symbols Y, Z, X;;, 1 <4,j <norn+1<1i,j<n+mand odd symbols X;; for all other ¢, j
by the relations

Y - det(Xij)i<ij<n = 1
Z - det(Xij)n+1<i,an+’m =1

More general, for a super vector space V, let End(V) be the functor from superalgebras to sets
sending a superalgebra R to Endrnod(V ® R). This enables us to define a representation theory
for affine supergroups.

Definition 5.10. Let G' be an affine supergroup and let p € G(k'°) be an element of order
two such that the inner automorphism of G induces by p is the parity automorphism. A linear
p-representation of G on a super vector space V is a natural transformation

r: G — End(V)

of monoid valued functors such that ri(p) : V' — V is the parity automorphism II of V. Denote
the category of linear p-representation of G by Rep(G, p).

Remark 5.11. One can translate the conditions imposed on p into the language of Hopf algebras.
Recall that if O(G) is the super Hopf algebra representing G, the multiplication in G translates
to the multiplication f - g = [f,g] o A on Homgaig, (O(G), R). Thus, if A(h) = h(;) ® h(y), then
p®> = e if and only if the map O(G) — k, h — p(h())p(h(2)) is the counit e. Furthermore, the
inner automorphism G — G, g — pgp~ ' is the parity automorphism of G if and only if the map

0(G) = O(G),  h— p(ha))h@p(S(has)))

is the parity automorphism on O(G), where h — h1)y ® hy ® h(s) is the two times iterated
comultiplication and S the antipode.

Remark 5.12. If O(G) is purely even, that is, G is an ordinary affine group viewed as an affine super
group, then p is central and Rep(G, p) can be identified as a monoidal category with Rep(G), but
with a different braiding: For each representation (V,r) of G as an ordinary group, r(p) defines
a Zy-grading on V by its plus and minus one eigenspaces and the new braiding on Rep(G) is
given by the corresponding Koszul rule. In the physics literature, an ordinary group together with
a fixed element of the center is often already called a supergroup, because on can then consider
"super representation" of this group (see section .

5.2 Super Tannakian formalism

In the remainder of this section we will always work with certain categories called tensor categories.
They are designed to model Tannakian categories leaving out the requirement of a fiber functor.

Definition 5.13 (Tensor category). A category A is called a tensor category over k if it is essen-
tially small, abelian k-linear, symmetric monoidal with the tensor product being bilinear and exact
in each variable, rigid, and satisfies and End 4(I) = k. A fiber functor between tensor categories
is a faithful k-linear exact strong monoidal functor.
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In section [£:3] T showed that having a fiber functor into the category of vector spaces suffices for
a tensor category to be of the form Rep(G) for some affine group G. There is a canonical way
to generalize this theorem to fiber functors into the category of super vector spaces, and I will
briefly state the corresponding results, which can all be found in section 8 of Deligne’s "Catégories
tannakiennes" [Del90]. A super fiber functor is a fiber functor into the category of super vector
spaces.

Definition 5.14. Let A be a tensor category and w a super fiber functor over A. For a superalgebra
A, let wa be the functor

A— AMod, X vv» AQuw(X).
The automorphism supergroup of w is the functor
Aut®(w) : sAlg, — Set, Ao Aut®(wy).
This is indeed an affine supergroup [Del90, 8.11].

Definition 5.15. Let A be a tensor category and id 4 be its identity functor regarded as a fiber
functor from A to itself. The automorphism supergroup

m(A) := Aut®(id )
is called the fundamental group of A.

For the category of super vector spaces we get m(sVecty) = Z5 [Del90, 8.14], and the non-trivial el-
ement acts as the parity automorphism on super vector spaces. Functors between tensor categories
preserve the structure of the fundamental group:

Proposition 5.16. Let A; and Ay be tensor categories, and n : A1 — Ag be a k-linear exact
strong monoidal functor. Then we have a canonical group homomorphism [Del90, 8.15]

7 m(Az) = n(m(Ay)).
The reconstruction theorem for affine supergroups now states [Del90, 8.17 and 8.19]

Theorem 5.17 (Recognition theorem for affine supergroups). Let A be a tensor category and
w: A — sVecty be super fiber functor. Then we have an equivalence of tensor categories

A~ Rep(w(m(A)),w)
where & is obtained from w by proposition [5.16

Remark 5.18. Note that a group homomorphism Zy — w(mw(A;)) is equivalent to the choice of an
element p € w(m(.A)) of order two as in definition namely the image of the non-trivial element.

Deligne’s theorem on tensor categories. In the remainder of this section I will prove Deligne’s
theorem on tensor categories, which gives a criterion as to when a tensor category admits a super
fiber functor, and therefore is of the form Rep(G, p) for some affine supergroup G.

Definition 5.19 (Subexponential growth). An object X of a tensor category A is of subexponential
growth if all its tensor powers are of finite length, and for all NV € N there is a n € N such that

length(X®") < N™.

A category A is of subexponential growth if all its objects are.
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Theorem 5.20 (Deligne’s theorem on tensor categories). A k-tensor category is of the form
Rep(G,p) for some affine supergroup G if and only if it is of subexponential growth.

In one direction this theorem is trivial, since the length of a super vector space of dimension p|q is
p + q, and in particular

length(X®") = (p + ¢)™.

For the other direction I will closely follow Deligne’s proof given in "Catégories Tensorielles" [Del02],
only filling in details that were left out in the original exposition.

5.3 Some representation theory

I will briefly recall the necessary constructions from classical representation theory needed for the
proof of Deligne’s theorem.

Representations of the symmetric group. Let n be a natural number. A partition of n is a
tuple A = (A1,..., Ax) of natural numbers such that A\; = Xy = --- > )4 and Zle Ai = n. In this
case we call n the order of the partition A and write |A| = n. To a partition A we can assign a so
called Young diagram [A] consisting of \; boxes in the ith row which are aligned on the left. For
example, if n = 11 and X\ = (5,4, 1, 1), we have the following Young diagram:

|

I will sometimes use integer coordinates (a,b) to describe the box at the given position in a Young
diagram; starting with (1,1) at the top left corner. The conjugate partition X' of a partition X is
defined by interchanging rows and columns in the Young diagram of A, i.e. the Young diagram of
Al is the one of X reflected at the diagonal. For the example above, A! = (4,2,2,2,1). For two
partitions p = (u1,...,u) and A = (Aq,..., As) we say that [u] < [A] if » < s and p; < A; for all
1 < r. A Young tableau is obtained from a Young diagram by numbering the boxes of the diagram.
In our example, the canonical Young tableau is

5]

10

We have an action of the symmetric group &,, on a Young tableau of order n by exchanging the
boxes according to the permutation of their numbers. For a given partition A of n and a numbering
of [A], we define two subgroups of &,, by

Py := {0 € &, : o preserves each row of [A]},

Q» = {0 € &, : o preserves each column of [\]}

The Young symmetrizer py is defined to be the product of the two projection operators belonging
to Py and Q,. In particular, if k[&,] denotes the group algebra of the symmetric group,

- (Z ) . ( 3] s ) K]

o€ePy oeQx
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Using this construction, we can classify all irreducible representations of the symmetric group. The
following two results can be found in [FHO04].

Theorem 5.21. For a partition \ of n, denote by Vy the left ideal of the group algebra k[S,,]
generated by the Young symmetrizer py. Then V) is an irreducible representation of &,, and every
irreducible representation of the symmetric group arises this way for a unique partition X.

Proposition 5.22. Let sgn be the alternating representation of the symmetric group, i.e. sgn :
S, — k, o — sgn(o). Then for every partition X\ we have

Ve = V) ®sgn.

Now let nq,...,n, be natural numbers summing to n. We can embed the product ]_[2:1 G, into
S, by identifying {1,...,n} with a disjoint union of the {1,... ,ni}ﬂ If p; is a partition of n; for
all i =1,...,r, then the tensor product X)._, V,, is an irreducible representation of [[,_; &,,. If
A is a partition of n, denote by

[Azﬂlv"'vﬂr]

the multiplicity of V) in the representation of &,, induced by this tensor product. These multiplic-
ities are given by the so called Littlewood-Richardson rule, which says the following (see [FH04]).

Construction 5.23. Let u,v be partitions of a and b respectively, and let a + b = n. If v =
(v1,...,), a v-extension of [u] is obtained in the following way. First, add v; boxes to the Young
diagram [¢] in such a way that there are never two new boxes in the same column. Then, put the
integer 1 in each of the new boxes. Now, add vy boxes to this diagram in the same manner, and
put the integer 2 in them. Repeat the process with each ¢ = 1,... k. Such a v-extension is called
strict if, when the integers in the boxes are listed from right to left and top to bottom, and one
considers the first d entries in this list (for any 1 < d < )}, v}), each integer between 1 and k — 1
occurs at least as many times as its successor.

If A is a partition of n, the Littlewood-Richardson rule states that the multiplicity [ : u, ] of V)
in the induces representation of &,, on V,, ® V,, is given by the number of strict v-extensions of []
to [A].

By transitivity, in the general case we get

(Apn, .o ] = Z RRZ TS [ 2R 2T B | AP VAP 2Y | [ 2SR VA 1) B )]

Lemma 5.24. (a) For two partitions u and A with |u| < |A| the following are equivalent.
(1) [u] = [A]
(ii) There exists a partition v of (|\| — |u|) such that [A: p,v] # 0
(i) A p, (1), (1) ] #0
-
(IAl=1ul) times

(b) Fixz a natural number r and a partition X\ of n. Then there exist natural numbers ny,...,n,
summing to n such that [A: (n1),...,(n.)] # 0 if and only if [A] has at most r rows.

(¢) Fiz two natural numbers r,s and a partition \ of n. There exist natural numbers ny, ..., n,
and my, ..., ms summing to n such that [X: (n1),...,(n.), (m1)%, ..., (ms)t] # 0 if and only
if [A] has no box at the place (r +1,s + 1).
9Specifically, there is an obvious bijection from the set of the first n natural numbers to {1,...,n1,n1+1,...,n1+
n?a"'inni}
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Proof. "(a)" As an immediate consequence of the Littlewood-Richardson rule, if |A| = ||+ 1 then
[A @ u,(1)] is equal to one if [p] < [A] and zero else. Expanding [A : p,(1),...,(1)] by
equation , we see that

Mg, (1),..., ()] = Z (A, (D][vr s v, (V)] [ve—1 s s ()],

ViyeesVE—1

where k = |A\| — |u|. Now all the factors on the right hand side define an inclusion relation
between the involved diagrams. By transitivity of inclusion of Young diagrams, this shows
that (i) and (ii4) are equivalent. The equivalence of (i) can then simply be seen from the
fact that the multiplicities [A : p1, ..., 4] are invariant under permutations of the ;.

"(b)" In an extension of [A] by [¢], one may add at most one box per column of [A] for every row of
[¢t]. Therefore, per row of [p], one may increase the number of rows of [A] by a maximum of
one. By this reasoning, every direct factor of the induced representation of Vi, )y ®- - ®@V(y,
can have at most r rows.

"(c)" This follows analogously to (b) and can be showed by induction over r and s.
O

The Schur functor. For a finite dimensional vector space V, the general linear group GL(V)
acts on the tensor powers of the vector space V®". We also have a canonical (right) action of the
symmetric group on these tensor powers by permuting of the factors, i.e.

(M ® ®Vy).0 = Vs(1) ® @ VUg(n)

for v; € V and ¢ € &,,. This right action commutes with the left action of GL(V'). We can thus
make the following definition.

Definition 5.25 (Schur functor for vector spaces). Let A be a partition of n, and let p) be the
Young symmetrizer corresponding to A. For a vector space V', define the Schur functor Sy by

Vv Sy (V) = im(py : VO — VO™,
For every vector space V| this is a representation of GL(V).
Since as k[&,,]-modules we trivially have V®" = k[6,] Qys,) V&, we can also write
Sx(V) = paV®" = py (k[6,] ®rrs, VE") = prk[6,] ®pfs, VE"

= VA ®yls,] Ve ~ vy Qk[e,] venr
= Homg, (Vy, V™).

Since the representations V) of &,, are self-dual [Jam78|, a Schur functor of the dual of a vector
space is the dual representation of the Schur functor of the original vector space. The following
result shows the importance of these Schur functors (see [FH04]).

Theorem 5.26. For each partition A and finite dimensional vector space V', the image of the
Schur functor S\(V') is an irreducible representation of the general linear group GL(V'). Further,
we have

Ve = (P VL@ SA\(V),
A

where the direct sum ranges over all partition of n. This relation is called Schur-Weyl duality.
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I will state some results concerning the behavior of the Schur functor under tensor products and
direct sums, partly without proof. They can all be found in [FHO04].

Proposition 5.27. Let V and W be finite dimensional vector spaces over k.

(a) For partitions p of k and v of | we have
S (V)®S,(V)= @ Sa(v)owvl,

IN=k+1
(b) For a partition \ of n we have

SSVeW)= @ (SuV)®8, (W),

lul+1v|=n
(¢) For a partition \ of n we have

S)\(V ® W) = (_D (SM(V) ® SU(W))@[VA:V;L@VV] ’

lul=lv|=n
with [V : V,, ® V] the multiplicity of V in the tensor product of V,, and V,,.

Corollary 5.28. If S, (V) = 0 for some vector space V, then also Sx(V') = 0 for all partitions \
with [p] < [A].

Proof. By part (a) of lemma there is a partition v of (JA| — |p|) such that [A: u,v] # 0. But
then Sy(V)®W#r] s a direct factor of S, (V) ® S,(V) = 0 by the above proposition, and thus
Sx (V) must be zero. O

Generalized Schur functors. Let A be a k-linear abelian symmetric monoidal category with
bilinear and biexact tensor product. We can define an operation between vector spaces and objects
of this category by a generalization of the tensor-hom adjunction.

Definition 5.29. Let V be a finite dimensional vector space and let X be an object of the category
A as above. Define V' ® X to be the object of A satisfying

Hom 4(V ® X,Y) = Homvect, (V,Hom4(X,Y)) for all objectsY of A.

Also define Hom(V, X) := V¥ ® X. If we choose a basis {e;};cr of V, then V ® X is isomorphic to
@, X.

There is an action of the symmetric group &,, on objects X®" of A provided by the braiding.
Since every finite dimensional vector space over k can be build (up to isomorphism) out of copies
of k, there is only one symmetric monoidal linear functor from Vecty to A, and it sends k to the
tensor unit I of A. The group algebra of the symmetric group is a monoid in Vecty, and it thus is
sent to a monoid in A4 (see proposition7 which I will also denote by k[S,,]. We can now define
the following: For a partition A of n, we have a generalized Schur functor that sends an objects X
of A to

Sx(X) = Home,, (Va, X®) ~ V3 Qpe,] X&.

The results of proposition [5.27 and also hold mutatis mutandis for this generalized Schur
functor. If in particular we take A = sVecty, this yields the following.

Proposition 5.30. If X is a finite dimensional super vector space of super dimension p|q, then
SA(X) # 0 if and only if [A] has no box at position (p+1,q + 1).
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Proof. If'Y is a purely odd super vector space with underlying vector space |Y|, then the underlying
vector space of Y®" is |Y|®" and the action of o € &,, on |[Y®"| is sgn(c) times its natural action
on |Y|®". Recall from proposition that for a partition v of n we have V,: = sgn ® V,,, and
therefore

1S, (V)| = |V, @&, YE"| = Vir @ige,1 [V = S (Y1)

Now for a general super vector space X = X, @® X, proposition [5.27] yields

S\X)| = [Si(Xo@ X)) =| B (Su(Xo)® S, (Xy)) o]
[u]+|v|=]A|
= @ (S/L(|X0|)®Sut(|X1|))@[A:lL7y]
MERPIEDY

For any finite dimensional vector space V' of dimension n we have S, )V = A"V = 0 for all
m > n, and therefore by corollary also S)V = 0 if [A] has more than n rows. Concludingly,
for S\(X) # 0 it is necessary and sufficient that there are partitions p and v with orders summing
to the order of A such that [u] has at most p rows, [v] has at most ¢ columns, and [A : u,v] # 0.
Using lemma (c)7 this is equivalent to [A] having no box at position (p + 1,q + 1). O

Corollary 5.31. Let p,q,7,s = 0 and X\, p,v be partitions such that [N = |p| + |v|. If (p + 7 +
l,g+s+1)e[A] and [N: p,v] #0, then (p+1,q+ 1) € [p] or (r+1,s+1) € [v].

Proof. Let X be a super vector space of dimension p|g and Y a super vector space of dimension
r|s. By proposition we must then have Sy(X @Y) = 0, and then proposition gives

0=S\(X@Y)= @ (Su(X)®8, ()",

[+ v]=[Al

so we must have S,(X) = 0 or S,(Y) = 0 for our specific ¢ and v. Again applying proposition
we see that this entails (p +1,¢+ 1) € [p] or (r+1,s+1) € [v]. O

Corollary 5.32. Let p,q,r,s =0 and A\, u,v be partitions of n. If (pg+ rs + 1,ps + qr + 1) € [A]
and [Vy:V, ®V,] #0, then (p+1,q+1) € [u] or (r+1,s+1) € [v].

This follows analogously to the previous corollary by using the tensor product instead of the direct
sum.

5.4 Commutative algebra in tensor categories

Let Ind(A) be the category of ind-objects of a tensor category A defined in section The
structure in this category suffices to define an internal commutative algebra theory.

Definition 5.33. An algebra in A is an object A of Ind(A) together with a multiplication m :
A®A — A and a unit e : I — A such that m is associative and commutative, and e is indeed a
unit. A morphism of algebras in A is an arrow f : A — B in Ind(A) such that fomy = mpo(f®f)
and foes = ep. Denote the category of algebras in A by Alg 4.

Remark 5.34. An algebra in A is simply a commutative monoid object in the monoidal category
Ind(A). The term "algebra" is chosen instead because this highlights the purpose of the construc-
tion. In particular, tensor categories closely resemble the category of vector spaces, and in this
category we also call a commutative monoid "algebra".
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Definition 5.35. If A is an algebra in A, a left A-module is an object M in Ind(A) together with
an action morphism p : AQ M — M such that po(e®idys) = idy and po(m®idy) = po(ida®p).
A morphism of A-modules is an arrow ¢ : M — N such that popyr = pyo(ida®¢). The braiding
in A can be used to view a left A-module as right A-module and vice versa, and I will always view
A-modules as bimodules in this way.

Proposition 5.36. For an algebra A in A, the category AMod of A-modules is abelian k-linear.

Proof. The k-linearity follows from the fact that the hom-sets of AMod are subsets of the hom-sets
of Ind(A) which are closed under scalar multiplication and addition. Now note that the zero object
of Ind(A) is an A-module with the trivial action, and thus also is a zero object in the category
AMod. Further, if (M, pps) and (N, py) are two A-modules, then the biproduct M @ N of M and
N in Ind(A) is again an A-module with action given by

ARMON)~ AQM®AQN 229, (@ N,

and this is a biproduct of (M, pps) and (N, py) in AMod. Now suppose f : (M, par) — (N, pn) is
a morphisms of A-modules. Then because Ind(A) is abelian, the underlying morphism f : M — N
has a kernel ker(f) and cokernel coker(f), and the two following diagrams show how these have a
canonical structure of A-modules.

ker(f) M ! N A@M 18 AN — A®coker (f)
Pker(f)Ai % TPM TPN le i m ‘pmkgrm
A®ker(f)>T>A®MmA®N M coker(f)

Note that I used the exactness of the tensor product to write A®coker( f) ~ coker(ids ® f). These
A-module structures make ker(f) and coker(f) the kernel and cokernel of f in AMod respectively.
It remains to show that every monic morphisms in AMod is a kernel and every epimorphism a
cokernel. To this end, note that a morphism in an additive category is monoic if and only if its
kernel is zero, and epic if and only if its cokernel is zero. Now if we have a monomorphism f in
AMod, then it must have a zero kernel, and since the underlying object of this kernel is the kernel
in Ind(A) by construction, f must also have zero kernel there. Now Ind(.A) is abelian, so f must
be a kernel there. Then by the construction of kernels in AMod it is clear that f must also be a
kernel in AMod. One can make an analogous argumentation for epimorphisms. O]

If A is an algebra in A, we can define the notion of a tensor product of modules over A. If M and
N are A-modules define the underlying object of M ®4 N to be the coequalizer

MRAQIN S MOIN —» M@ N

where the two parallel arrows are given by the module action of A on M and N respectively. The
morphism AQM QK AQN — M ® A® N which is action of A on M descends to a morphism
AR M ®4 QN — M ®4 N, giving an A-module structure on M ®4 N.

Proposition 5.37. This tensor product makes the category AMod of A-modules into a symmetric
monoidal category with unit given by I4 = A as an A-module with action given by the multiplication.

The proof of this statement is straight forward and can be found in [Mar09, prop. 1.2.15]. An
A-module M is called flat if the functor N v~ N ®4 M is exact. For any object X of Ind(.A) we
can define a free A-module A ® X with action

AQA® X 28U, 4@ X,
and free modules are always flat since M ®4 (A® X) ~ A® X, and the tensor product in Ind(.A)

is exact.
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Lemma 5.38. FEvery A-module is a quotient of a flat A-module.

Proof. Let M be an A-module. Then one can view A ® M as a free A-module, and in this case
p: A® M — M is a morphism of A-modules. By the unit axiom, we have po (e ®idys) = idas, so
p is split epic and in particular, M is a quotient of A® M. Since free modules are flat, this proves
the claim. O

Another important class of flat modules are the ones that admit a dual.

Proposition 5.39. In a symmetric monoidal category with dualizable object X, the functor —® X
preserves all limits and colimits. In particular, it is exact and thus X is flat.

Proof. In this case the functor —® X is both left- and right-adjoint to the functor —® X . Since
right-adjoint functors preserve limits and left-adjoint functors preserve colimits [ML78]|, this shows
that — ® X preserves all limits and colimits. O

Corollary 5.40. Every dualizable modulue over some algebra A in A is flat.

Definition 5.41. Let A be an algebra in A. An A-algebra B is an algebra in A together with a
morphism of algebras f : A — B. Denote the category of A-algebras by Alg ,.

We can define extension and restriction of scalars functors in this setting. If B is an A-algebra and
M a B-module, the morphism

pN[O(f®ldM)A®M—>B®M—>M

makes M into an A-module, which I will denote by M| (restriction of scalars). In turn, we
can send an A-module M to the free B-module B®4 M =: Mp (extension of scalars), and this
operation is left adjoint to the restriction of scalars. In particular, for M an A-module and N a
B-module, the adjunction isomorphism Hom gnea(Mp, N) —> Hom anod (M, N|4) and its inverse
are given by

(u: Mg — N) > (M~ A®4 M 229 e, M % N), (6)
(v:M—N)— (Mg =B®s M 22 Bg, N ~ N). (7)

Note that "extension of scalars" is a strong monoidal functor:

(M®aM')p=B®s(MsM')=~(B®p B)®a(MsM)
~ (B®s M)®p (B®sM')=Mp®p Mg
and Ap = B®4 A~ B.
This adjunction gives rise to an alternative way to view the category Ind(A). The isomorphism

I® I => I makes I into an algebra with the identity as the unit, and every object X of Ind(.A)

admits a unique module structure over this algebra given by the isomorphism I ® X = X. Every
morphism in Ind(A) is automatically a morphism of I-modules, and thus we have an equivalence

Ind(A) ~ IMod.

If A is an algebra in A, the unit diagram shows that e : I — A is indeed a morphism of algebras,
i.e. the diagram

IR 2% AR A

:J lm

€

I ——— A
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commutes. Since [ is a simple object of Ind(.A) [EGNO15, Thm. 4.3.8], this morphism must have
a trivial kernel or be the zero morphism, and in the later case we have A = 0. Using this, every
algebra can be seen as an I-algebra, and the extension of scalars functor /Mod — AMod is the
exact functor M — A® M.

The symmetric algebra. We can define the categorical analog to the symmetric algebra of a
vector space. Let X be an object in Ind(.A). In the last section we have seen how the symmetric
group acts on the tensor powers of such an object.

Definition 5.42 (Symmetric power). The symmetric n-power of X is the cokernel

L -
X®n Zocen, y@n __, gy,

If f: X — Y is a morphism in Ind(.A), by the universal property of the cokernel we have an unique
morphism f™ : Sym™(X) — Sym"(Y") making the following diagram commute.

1
x®@n M Ercen ] y@n Sym" X
Qn Xn ; n
/ J f J m i
y®n YOy Sym"Y

% ZGEGTL o
In this way, Sym"” becomes an endofunctor Ind(A) — Ind(.A).

The interaction between different symmetric powers is very similar to the vector space case. In
particular |[Braldl Prop. 4.4.4],

Proposition 5.43. The tensor multiplication X® ® X®1 — X®®+9) [ifts to an epimorphism
Sym?X ® Sym?X — Sym?T7X.
The induced morphism

(—D Sym” X ® Sym?Y — Sym" (X @Y)

p+q=n
s an isomorphism.
The symmetric powers assemble into an algebra in A. Note that Sym®X = I for all objects X.

Definition 5.44 (Symmetric algebra). For X an object in Ind(A), define the symmetric algebra
over X as

Sym(X) := @ Sym"X.

TLEZBO

With unit 7 = Sym°X < SymX and multiplication induced by the morphisms Sym? X ®Sym?X —
Sym(p T X of proposition this is indeed an algebra in A, which is immediately clear since the
multiplication morphisms inherit commutativity and associativity from the tensor multiplication.
We can view Sym as a functor Ind(A) — Alg 4.

The role of this functor is to provide a universal algebra over every object of Ind(A). To make this
more precise,

Proposition 5.45. The functor Sym : Ind(A) — Alg, is left-adjoint to the forgetful functor
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Proof. Let A be some algebra in A, and f : X — A a morphism in Ind(A4). For any n > 0 the
multiplication m : AQ A — A induces a morphism A®™ — A, and for n = 0 the unit is a morphism
I = A® . A, Commutativity of the multiplication in A ensures that these morphisms lift to
morphisms Sym” A — A, and then using f we get morphisms

Sym"X L5 Sym™A — 4,

and hence a morphism f : SymX — A. By construction, this is the unique morphism of algebras

such that (X = Sym'X < SymX %> A) = f. O

We can repeat the whole construction for the category of modules over some algebra (A, e,m) in
A. For M an A-module, define the symmetric n-power over A as the cokernel

1
M@an T Ereen T @an g g,

This symmetric power over an algebra preserves free modules, i.e. Sym% (A® X) ~ A® Sym" (X).
Therefore, the symmetric power of an A-module (M, p) is again an A-module with action p™.
Again, these symmetric powers assemble into an algebra, the symmetric A-algebra of M,

Sym(M) := @ SymiM

neZ=o

with unit 7 5 A = Sym%M — Sym M and A = Symi — Sym 4 M. As before, the functor Sym 4
is left-adjoint to the forgetful functor U : Alg, — Mod 4.

Proposition 5.46. The symmetric powers preserve flatness, i.e. if M is a flat A-module, then
Sym'y (M) also is a flat A-module for all n.

Proof. As a left-adjoint, the symmetric algebra functor preserves colimits, and since it is the direct
sum over the tensor powers, these must preserve colimits too. Further, we have already seen that
the symmetric powers preserve freeness, and thus by Lazard’s Theorem |[Lurl7, Thm. 7.2.2.15]
they also preserve flatness. O

The exterior algebra. Analogously to the symmetric powers, we also have exterior n-powers
A" X of an object X of Ind(A) given as the cokernel

X@ﬂ % Zoesn Sgn(U)g X®n AnX
This can be made into an endofunctor of Ind(.A) in the same way as the symmetric algebra, and
proposition holds when exchanging all symmetric powers by exterior powers |[Braldl Prop.
4.4.4]. These exterior powers can also be assembled into an algebra.

Definition 5.47. The exterior algebra of an object X in Ind(A) is given by

AX)= @ A"X.

neZ=o

Its unit is given by the fact that A°X = I, and its multiplication is induced by the tensor multi-
plication X? ® X? — XP*4. Note however that this "algebra" is non-commutative, and thus not
formally an algebra by our definition.

We also have exterior powers and an exterior algebra in the category of modules over some algebra
Ain A just as in the symmetric case.
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5.5 Proof of Deligne’s theorem

To prove that every tensor category of subexponential growth admits a super fiber functor, we first
need to translate the condition of subexponential growth into something more easy to handle. To
this end, note

Proposition 5.48. For an object X of a tensor category A the following are equivalent
(i) There is a Schur functor annihilating X, i.e. there is a partition X such that S)(X) = 0.
(i) X is of subexponential growth (see definition .

It is easy to show that condition (i7) implies condition (). Suppose that for an object X all
Schur functors are non-zero, so in particular dim Sy(X) > 0 for all partitions A\. Then by X®" ~
@, VA ® S\(X) (see theorem |5.26) and the properties of the dimension we have

1

2

length(X®") > Z dimVy > Z (dimVy)? | = (n)2,
[A|=n [A|=n

since for a finite group G, every irreducible representation V appears in the regular representation
dimV times [FHO4]. But (n!)”? grows faster than any power, and thus X cannot be of subexpo-
nential growth.

The other direction will follow from Deligne’s theorem, and I will state the proof later in the
section.

Proposition 5.49. The collection of objects of a tensor category satisfying the conditions of propo-
sition is stable under direct sums, tensor products, duals, eztension@ and subquotients.

I will split the proof of proposition into two lemmas. Let A be a k-linear abelian symmetric
monoidal category with bilinear and exact tensor product.

Lemma 5.50. The objects of A annihilated by at least one Schur functor is stable under direct
sums and tensor products.

Proof. Suppose S, (X) = S,(Y) =0 and let p,g,r, s = 0 be integers such that (p+1,¢+ 1) € [i']
implies [p¢] < [¢/] and (r + 1,5 + 1) € [V/] implies [v] < [v/]. If X is a partition satisfying
(p+7r+1,g+s+1) e [A], we have by [5.27]

SEeY)= @ (S @S, ()Tl

[T+ 1=[A]

and if for some p/,v we have [\ : p/,v'] # 0, corollary implies that (p + 1,¢ + 1) € [] or
(r+1,s+ 1) € [/]. By assumption, this yields [p] < [1//] or [v] < [¢/], and by corollary [5.28| we
get S, (X) = 0 or S,(Y) = 0. This shows stability under direct sums. For the tensor product,
choose (pr + ¢s + 1,ps + qr + 1) € [\] and proceed analogously. O

Lemma 5.51. All objects of A annihilated by at least one Schur functor are of finite length, and
the family of those objects is stable under subquotients and extensions.

Proof. If Y is a subobject of X, then by exactness Y®" is a subobject of X®", and thus
Hom(Vy, Y®") < Hom(Vy, X&)

is an inclusion of a subobject. The functor "invariant under the action of &,," is exact: If k[&,]
again denotes the group algebra, this functor is the same as Homyg,moa ([, —), where I is

10 An extension of an object X by another object X’ is a short exact sequence 0 — X’ — X” — X — 0.
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equipped with the trivial action. But this is clearly exact, since I is a direct factor of the free
module k[&,,] and thus projective. Therefore Sy(Y') is a subobject of Sy(X). Dualy the same
argumentation shows that if Z is a quotient object of X, then S\(Z) is a quotient of Sx(X), thus
proving stability under subquotients.

Now let X be an extension of X’ by X”, i.e. we have a short exact sequence

0-X"->X—> X —0.

Then we obtain a filtration X > X” > 0 of X with associated grading X’ @ X”, and by the
exactness of the tensor product we also get a filtration

XO 5 X" @ X®rl) 5. 5 (X% 50

of X®" with associated grading (X’ @ X”)®" for all n € N. As this filtration is &,-equivariant,
this in turn yields a filtration of Sy (X) with associated grading S (X’ @ X") for every partition
A of n, showing that stability under extension follows directly from stability under direct sums.
We can repeat this procedure with any finite filtration F' or X, obtaining a filtration of Sy(X)
with associated grading Sy (grx(X)) where grn(X) is the grading of F. Now by rigidity, the tensor

product of two non-zero objects is non-zero, and therefore if gri.(X) # 0 for i = 1,...,n, then
Sx(grp(X)) contains their tensor product which is non-zero, and hence S)(X) # 0. This shows
that S (X) = 0 must entail that length(X) < n. O

Proof of proposition [5.49] The stability under taking duals follows directly from the fact that the
Schur functor of a dual object is the dual object of the Schur functor of the original object, since
this implies that Sy (X) = 0 entails Sy(X") = 0. The proposition now follows directly from lemma

[E.50 and B511 O

If A is a tensor category with subexponential growth, in particular all its objects are of finite
length, and we can use the following property simplifying the handling of the hom-spaces.

Proposition 5.52. If all objects of a tensor category A are of finite length, then all its hom-spaces
are finite dimensional.

Proof. We have an internal hom given by [X,Y] = Y®X Y, so in particular we have the tensor-hom
adjunction

Hom4(Z,[X,Y]) ~ Homa(Z ® X,Y)

for some objects X,Y,Z of A. In particular, choosing Z = I, we see that Hom4(X,Y) =
Hom 4(I,[X,Y]), and thus

HomA(I@nv [X,Y]) = él_)HomA(Ia [X,Y]) = Hom4 (X, Y)@n
i=1

This shows that a morphism f : I®" — [X,Y] is given by n morphisms f; : X — Y, and since
I is simple, the kernel of a morphism I — [X,Y] is either zero or I, so f is a monomorphism if
and only if all the f; are linearly independent. Now since [X, Y] has finite length, it can only have
finitely many factors of I, and so there is a maximal such n, showing that Hom 4(X,Y") is finite
dimensional. O

We can now start the actual proof of Deligne’s theorem [5.20] For the rest of this section, let A
denote a tensor category of subexponential growth; so in particular all its objects are of finite
length and for every object there is a Schur functor annihilating it. The first step is to find a more
general fiber functor.
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Definition 5.53. Let R be a (possibly infinite-dimensional) k-superalgebra. An R-fiber functor
is a fiber functor from A into the category of R-modules.

The key result for the proof of theorem is the following lemma.

Lemma 5.54. Let M be a dualizable module over a non-zero algebra A in A. There exists a non-
zero A-algebra B such that the B-module Ig is a direct factor of Mp if and only if Sym'y (M) # 0
for all n.

Proof. For an A-algebra B, denote by Fact(B) the collection of pairs of morphisms of B-modules
(o :Ip — Mp,B: Mg — Ip) such that o« = id;,. Note that such o and § are exactly the
data making Ip into a direct summand of Mp. We can make this into a functor from Alg, to
sets in the following way: Let B,C be A-algebras and f : B — C be a morphism making C a
B-algebra. Now let @ : Ig — Mp and § : Mg — Ip be as above. Since C ® B ~ C and
C®p (C®aM)~C®s M, the extension of scalars functor from Algs to Alg. sends these «
and /3 to morphisms & : I — M and 3 : M — I, which by functorality also satisfy fod = idg,.

Clearly, there exists an A-algebra B such that Ip is a direct factor of Mp if and only if this
functor is non-trivial. The idea of the proof now is to compute a representing object (By, ag, o)
of this functor, and showing that it is non-zero if and only if all the symmetric A-powers of M are
non-zero. More concretely, we want By and («y, 8p) € Fact(By) such that

Homaig , (Bo, B) — Fact(B)

f— (extgoao,extgo)

is a natural isomorphism, where extg0 denotes the extension of scalars functor from By to B which
uses f to implement B as a By algebra. To this end, let B be some A-algebra.

e A morphisms 5 : Mp — Ip of B-modules corresponds via the extension /restriction of scalars
adjunction to a morphisms of A-modules v : M — Ip = B. By proposition [5.45] this is in
turn equivalent to a morphism of A-algebras

Valg : Sym (M) — B.
e A morphism « : Iz — Mp of B-modules corresponds via the extension/restriction adjunction
to a morphism of A-modules v/ : A — B ®4 M. We can make this into a morphism

u: MY — B by

MY ~ MY @4 ALY VY @, (B@a M)~ BRa MY @4 M= Boa A~ B,

and this indeed gives a one-to-one correspondence between morphisms A — B ®4 M and
MY — B with inverse sending f: MY — B to

A, M @u MY ~ MY @4 M BN B, M.
Again by proposition [5.45] u: MY — B corresponds to a morphism of A-algebras

Ualg : Sym,(MY) — B.

Let ¢ : A — B be the morphism making B into an A-algebra. By equation @, the exten-
sion/restriction of scalars adjunction sends the identity on Ig to

(A:A@AA%)B®AA&B®AA:B)=QD.
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Thus, the condition that 5o a = idy, is equivalent to the restriction of 5o a to A-algebras being
the morphism ¢ making B an A-algebra. Expressing the restriction of § o a in terms of u and v
using equations @ and 7 we get,
(IA coev M@A MY ~ MY ®AM u®id py B@AM idp®u B®AB mp B)
= (14 2% M@a MY ~MY®M 2% B, B 5 B),

which is just the product u - v = mp o u® v applied to the image of coev. This morphism u - v is
again equivalently given by the A-algebra morphism

Valg * Ualg : Symy (M) ® Sym,(MY) — B.

Note that since this is a morphism of A-algebras, it must be equal to ¢ in the zero component,
ie. (A~ A®sA=Sym" (M) Q@4 SymQ(MY) =525, B) — ¢. As a result of this discussion,
giving morphisms « and 8 making Ig a direct factor of Mp is equivalent to giving a morphism of
A-algebras

Symy (M) ®4 Symy(MY) — B

such that its composition with coev: Iy — M ®4 MY = Sym}(A) ®4 Sym’y(MY) and 14 : [, =
A®4 A = Sym% (M)®4 Sym? (M ") yields the same morphism. Therefore, the universal A-algebra

By must be given as the coequalizer
LA b
Iy =3 Sym 4(M) ® Sym, (M) —— B.

coev

Since Sym (M) ®a Syma(MY) = D, sez_, Symly (M) ®4 Sym} (M) is a direct sum, the mor-
phism by already is determined by its action on all Sym®) (M) ® 4 Sym? (MY). We can view the
coevaluation as morphism

Symy (M) @4 Sym (M) — Sym’y™ (M) @4 Sym’™ (M)

by composing Sym/ (M) ®4 Sym% (M") ~ A®a Sym’ (M) ®4 Sym% (M") with coev and the
multiplication map. Call this morphism d, ;. Then the restrictions of by to the direct summands
have to make the following diagrams commute

Sym’s (M) ®4 Sym’t*(M Y —>Sym"+1 M) ®4 Sym’y ot (M)

\/

for all n € Z5¢ and a € Z, and since Sym 4 M and Sym4M " are flat, By is the direct limit

Bo=@@ lim Sym}(M)®a Sym;™"(M") (8)

aceZnelzo

with the coevaluation as transition morphisms. Since bgots4 = by o coev and by must send the unit
of Sym 4 (M)®a Sym 4(M"Y) to the unit of By, we see that this unit of By must be the direct limit
of

(coev™ : I — SymiM ®4 Sym4M") = 6p—1n—10---0dgp 0,

where e : I — A is the unit of A. It therefore suffices to show that coev™ # 0 for all n if and only
if Sym’y M # 0 for all n. But this is trivial, since coev™ is just the coevaluation map of the duality

Sym; (M) ~ (Sym (M))".
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The reason why more tensor categories are categories of super representations than categories of or-
dinary representations lies in the fact that it is much easier to have a well defined "superdimension"
plg than an ordinary dimension n. To make this more precise,

Definition 5.55. Let I be an object of A such that I®I ~ I and the braiding I® I — I®]I is the
multiplication by (—1). This object is simple since I is simple. Define a functor F : sVect, — A
sending a super vector space V =V, ® V; to

F(V)=WV@De(Vi®l)
and sending a morphism f:V — W to fy®id; ® f1 ®id;.
The conditions on I ensure that it mimics the behavior of the super vector space V = 0® k.

Proposition 5.56. This functor F' is strong monoidal, and if (I, Iy denotes the full subcategory
of direct sums of copies of I and I, F : sVect, — A is an equivalence of categories.

Proof. The isomorphism I ® I ~ I induces a natural isomorphism

FV)@FW)=V@IeoVie)(WIeW,I)
~Vo@Wo@IQI®(VieWiI®I)
®VoWiRIQI®(VieWoI®I)
~VoaWodVioaW)RI® (VoWieVioWy) IRl
= FVQW),

and we clearly have F'(k) = k® I ~ I. This proves the first part. For the second part, note that if
{ei}ier is a basis of a vector space V, then V® X ~ @; X, so F(V) indeed lies in (I, I) for each
super vector space V. F'is faithful since f # g : V — W means that fy # go or f1 # ¢1. It is
also full, since the simplicity of I and I ensures that every morphism f : I® @ [®1 — [Or @ [®s
must have components f/ which are either zero or the identity. Therefore, such a morphism can
only commute factors of I and I, or annihilate them, and all these operators are possible with
morphisms of the form ¢ ®id; @ h ®idz for linear g and h. That F' is essentially surjective is clear
by the definition of (I, I). O

We can WOLOG assume that the category A admits such an object I: If there is no such object,
replace A by the category of Zy-graded objects of A. In section[5.1] we have seen that this category
also is a tensor category, and it clearly inherits the condition of subexponential growth. Then the
unit I seen as odd element is such a I, and since A can be viewed as the subcategory of even
objects of A%2, an R-fiber functor for A%2 also yields one for A. The next proposition shows that
we can expect every object of A to have a well defined "super-dimension" after some extension of
scalars.

Proposition 5.57. For an object X of A the following are equivalent.

(i) There exist non-negative integers p and q such that X ~ (I®? @ I®9) 4 for some non-zero
algebra A.

(i) There is a Schur functor annihilating X .

Proof. "(i) = (ii)" For every partition )\, S\(X),4 is isomorphic to Sy(I®? @ I®%),, and since
(I, Iy ~ sVecty, we can use proposition m to deduce that there is some A such that Sy (I°P @
I®9) 4 = 0. Since A is non-zero, this also entails Sy(X) = 0.

"(#4) = (i)" Suppose that for some non-zero algebra A we get

Xa=>I9 I OR

with R some A-module. Then R is dualizable as direct factor of the dualizable A-module X 4. We
consider three different cases:
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(a) All the Sym'; (R) are non-zero. By lemma there is a non-zero A-algebra B such that I
is a direct factor of Rp. Then we get a new decomposition

Xp~IF @I oR
for some B-module R’'.

(b) All the Sym; (I ® R) are non-zero. Again by lemma we find an A-algebra B such that
Ip is a direct factor of (I ® R) g, and a direct factor Ip of this object is equivalent to a direct
factor Iz of Rp, so we get a new decomposition

XB ~ I%T ('B I§S+l @R/
for some B-module R’.

(c) Non of the above. Since Sym’4(I ® R) ~ I®" ® A, R, we then have n and m such that
Sym’s" 'R = AY"'R = 0. Let k > mn and X a partition of k. Since [A] contains a row of
length greater than n or a column of length greater than m, and by corollary we get

Sx(R) = 0. Since further by theorem

R® ~ (X) VA ®Sy\(R) =0,
A=k

lemma [2.12) implies that R = 0, because R is dualizable as direct factor of a dualizable
module. In this case we have a situation as in (7).

Starting with A = I, r = s = 0 and R = X we can iteratively apply cases (a) and (b), and
either reach case (c) at one point, or continue indefinitely. In the later case, X admits a direct
factor 1P @ I®7 after extension of scalars for arbitrarily large p + ¢. If this happens, for each n
one can choose a partition A of n and p, g such that n < (p + 1)(¢ + 1), and by proposition
S\ (I®P @ I®9) is non-zero. But since 19 @ I is a direct factor of X after extension of scalars,
S)\(I® @ [99) is a direct factor of Sy(X) after extension of scalars, which is in contradiction to
Sx(X) being zero. This shows that we always reach case (c¢) and thus proves the claim. O

Recall the notion of an exact sequence from section 2.2} We need one more technical result for the
proof of the existence of some R-fiber functor for A. It can be found in |[Del90, 7.14].

Lemma 5.58. FEvery short exact sequence in A splits after some (non-trivial) extension of scalars.

We are now finally in a position to show the existence of a super algebra R such that we find an
R-fiber functor w : A — RMod.

Proposition 5.59 (Existence of R-fiber functor). If every object of a tensor category A is anni-
hilated by some Schur functor, then there exists a non-trivial fiber functor from A to some possibly
infinite dimensional super k-algebra.

Proof. By proposition for each isomorphism class [X] in A there exists some non-zero algebra
B such that Xp ~ (I9 @ [®4) 5 for some p and ¢, and by lemma for each isomorphism class
[X] of short exact sequences in A there exists some non-zero algebra C such that X is split. Let
A be the filtered colimit of the tensor products of finitely many of those algebras B and C. This
colimit exists by construction of the ind-category. The algebra A is non-zero, and after extension
of scalars to A every object of A is a sum of copies of I and I, and every short exact sequence splits.

We can identify the category of super vector spaces with the full subcategory (I,I) of A, and

we can further identify Ind(I, ) with the category of possibly infinite dimensional super vector
spaces. For X an object of Ind(.A), denote by p(X) the largest subobject of X which is an object of
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Ind{I, I’). This object p(X) can be identified with the (possibly infinite dimensional) super vector
space

p(X) = Homlnd(.A) (I7 X) S3) Homlnd(.A) (jv X)

We can make this into a functor p : IndA — Ind{I, ) by sending a morphism f : X — Y to
fe® fo 2 p(X) — p(Y), where f,(g) = fog. The multiplication m : A® A — A induces a
multiplication on p(A) by

)

(4) ® p(A) — p(A® 4) 2™ p(4),

and the unit e : I — A induces a unit p(I) = Homynqa(l,I) ~ k — p(A) making p(A) into
a (possibly infinite dimensional) superalgebra. If M is an A-module, the action AQ M — M
induces a morphism p(A) ® p(M) — p(A® M) — p(M) making p(M) a p(A)-module. If M
and N are two A-modules, the universal property of the coequalizer gives a unique morphism
p(M) ®,(ay p(N) — M ®4 N making the following diagram commute

p(M)® p(A) ® p(N) —— p(M ®p(A p(N)

| l \

M®A®N—>M®N—»M®AN

where the vertical arrows are inclusion as subobject. Since p(p(X)) = p(X) for all objects X, this
morphism induces a morphism

p(M) ®p(a) P(N) = p(M ®a N)

Now suppose that M = A ® My with My an object of (I,I). Then My = I®? @ ¥ and
AQMy=ARQIP AR ~ XO @ (X ® )P4, and similarly for p(A) ® My, so we get
p(M) = p(A ® MO) = Homlnd(A) (I7 A®p @ (A ® j)@q) @ HomInd(A)(L A®p ® (A ® j’)@q)
= Homlnd(A) (I7 A)@p S) HomInd(.A) (Iv A® j)@q
@® Homlnd(A) (—T7 A)@p @ Homlnd(A) (I7 A® I)®q
= p(A)® @ p(A® )% = p(A) ® Mo.
If in addition N = A® Ny with Ny an object of (I, I), then we have M ®4 N ~ A® My ® Ny and

the following commutative diagram shows that the morphism p(M) ®,4) p(N) — p(M ®4 N) is
indeed an isomorphism in this case.

(P(A) @ My) ®pay (p(A) ® No) —— p(A) ® My ® Ny

Zl l:

p(M) ®p(ay p(N) ————— p(M ®a N)
Now define a super k-algebra by R := p(A), and let
w:A— RMod (9)

be the functor sending an object X of A to the R-module p(X4). By construction, X 4 must be of
the form A ® X, with X € (I, I, and thus we have an isomorphism w(X) ®r w(Y) —» w(X ®Y).
Since also w(I) = p(A) = R, this shows that w is a strong monoidal functor. By construction, w
is k-linear, and it is faithful because the Yoneda embedding and therefore p is. If ¥ is an exact
sequence in A, then ¥ 4 is split, and since additive functors preserve split exactness, w(3) = p(X4)
is also split exact, proving the exactness of w. This finishes the proof. O
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Existence of a super fiber functor over k. Deligne now uses some techniques from algebraic
geometry to reduce the R-fiber functor to a k-fiber functor [Del02, Section 3 and 4]. I will state
the result without proof.

Proposition 5.60 ( [Del02, prop. 4.5]). If A is a tensor category which admits a fiber functor
over some non-zero super k-algebra, then A also admits a super fiber functor over k.

We can now finish the proof of the main theorem, and also of proposition [5.48

Proof of Deligne’s theorem on tensor categories [5.20 If A satisfies condition (i) of proposition
i.e. is of subexponential growth, it also satisfies condition (i) (see discussion below and
therefore we can use proposition [5.57] to find a fiber functor of A over some non-zero superalgebra
R. Then by proposition [5.60] it also admits a super fiber functor over k. We can now use the
recognition theorem for affine supergroups to conclude that A is of the form Rep(G,p) for
some affine supergroup G and p € G(k'°). O

Proof of proposition [5.48] "(i) = (i7)" If every object of A is annihilated by some Schur functor,
then by proposition [5.59] and we have a super fiber functor w : 4 — sVect, and if X is an
object in A with w(X) of dimension p|q, then because w is faithful and exact, X®" is of length at
most length(w(X)®") = (p + q)". O

6 Applications in quantum field theory

In modern physics and in particular in quantum field theory, representation theory plays an im-
portant role, since most physical symmetries are implemented in form of a representation of an
algebraic object such as a group or a Lie algebra. In this section I will explore the use of Tannaka
duality in the context of physical symmetries.

6.1 Symmetry groups

To begin with, we need to define what is meant by "physical symmetry". Informally speaking, a
symmetry of a physical system is a transformation of the corresponding mathematical model that
does not change the physics predicted by that model. The precise notion of a symmetry therefore
depends on the mathematical model in use.

For example, in classical mechanics a symmetry is given by a change of the Lagrangian which leaves
the stationary points of the action functional invariant. A good example are spacial symmetries
like rotations that exploit geometrical properties of the physical system, like rotation invariance.
In quantum mechanics a symmetry is an endomorphism of the projective space over the Hilbert
space of states which leaves all the transition probabilities invariant. I will be mostly be concerned
with symmetries in quantum field theory. Here, similar to classical mechanics, a symmetry is a
transformation of the fields and the spacetime which maps solutions to the equation of motion to
other solutions.

One distinguishes between two different kinds of symmetries. Geometric symmetries are linear
endomorphisms of the underlying spacetime, and in the standard model of particle physics these
endomorphism are given by the Poincaré group, or to be more precise, the universal cover of the
identity component of the Poincaré group. The other kind of symmetry is called internal symmetry,
and they are characterized by leaving the spacetime points invariant. These internal symmetries
usually form a compact Lie group; in case of the standard model this is U(1) x SU(2) x SU(3) [BH10].
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There is a theorem due to S. Coleman and J. Mandula stating that under some reasonable physical
assumptions, a quantum field theory whose geometric symmetry group contains the Poincaré group
cannot have mixed internal and spacial symmetries, i.e. the full symmetry group is always given
by a direct product of the geometric and internal symmetry group [CM67]. One way to circumvent
this theorem is allowing the symmetries to form more general structure than a group, for example
a supergroup. The corresponding physical theory exploring the consequences of this relaxation
is called supersymmetry. The necessity of such a theory lies in the known phenomena that stay
unexplained by the standard model, as well as deviations of the standard model from measurement
in some points |[Ell02]. Up until now, no experimental evidence for a supersymmetry has been
found, but there are strong theoretical implications of their existence. I will elaborate on one of
these in section

6.2 Tannaka-Krein duality

To see the relevance of Tannaka duality for quantum field theory, we first need to adapt to the
typical situation in physics. Here, one usually considers continuous complex representations of
topological groups on Hilbert spaces, and often one in particular considers compact or locally
compact topological groups. As explained in the introduction, a corresponding reconstruction
theorem was given in the 1940’s by T. Tannaka and M.G. Krein, which is also the reason for
the naming "Tannaka duality". In particular, Tannaka proved that a compact topological group
@G is isomorphic to the group of self-conjugate natural endomorphisms of the forgetful functor
U : Repc(G) — Vectc, where the conjugate of a natural transformation o : U — U is defined as

ay(r) = ay(z)

with V' the conjugate representation to V. This statement along with a proof can be found
in [JS91}, section 1]. In view of the application of this theorem to algebraic quantum field theory,
I will present a more modern formulation of Tannaka’s classical result.

x-Categories. The additional structure in the category of unitary representations on Hilbert
spaces in comparison to linear representations over an unspecified field is the existence of a hermi-
tian adjoint. To capture this structure categorically, we define

Definition 6.1. A *-operation on an abelian C-linear category is an assignment of a morphism
s$* 1Y — X to every morphism s : X — Y such that this map is antilinear, (s*)* = s and s*os = 0
implies s = 0. A *-category is a C-linear abelian category equipped with a *-operation. A tensor
*-category is a tensor category that is also a *-category and satisfies (s ®¢)* = s* ® t*. A functor
F between *-categories is *-preserving if F(s*) = F(s)* for all morphisms s.

In a Hilbert space, we call an operator A unitary if ATA = AA" = 1. Analogously, a morphism
s: X — Y in a x-category is called unitary if s*os = idx and sos* = idy. An endomorphism p of
an object X is called projection of p = pop = p*. We say that a x-category has subobjects if for ev-
ery object X and every projection p : X — X thereisan s:Y — X with s*os = idy and sos* = p.

A braiding of a tensor *-category is required to be unitary in the sense that its components are all
unitary, and the isomorphisms associated to a strong monoidal functor of tensor *-categories are
also required to be unitary. The notion of duals is replaced by conjugate objects that model the
complex conjugate of a representation.

Definition 6.2. Let C be a tensor x-category, and X an object in C. An object X is called
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conjugate of X if there are morphisms 7 : I - X ® X and 7 : I — X ® X such that the morphisms

X2I@X 0%, yo XX 9%, xoI~X and
X2IeX 0% feoxoX 9, o1~ X
are both the identity.

We can now make precise what we expect from a category that is similar to the category of finite
dimensional Hilbert spaces Hilb.

Definition 6.3. A TC” is a tensor x-category with finite dimensional hom-sets, conjugates and
subobjects. A BTC” is a TC” with unitary braiding, and a STC” is a BTC* whose braiding is
in fact symmetric.

As expected, the category of finite dimensional Hilbert spaces is a STC* with the usual tensor cate-
gory structure and conjugates given by the dual Hilbert space. Similarly, for a compact topological
group, the category of finite dimensional unitary representations is an STC*.

Definition 6.4. Let C be a tensor *-category and X an object of C. A conjugate (X,r,7) is
called standard if for all s € Enda(X) we have

r*oldg®sor=7"os®idg of.
In a TC”* every object admits a standard conjugate [HMO06, lem. A.37].

Just as dual objects in a rigid tensor category can be used to define a trace and dimension (see
definition [2.18)), conjugate objects can too. For C a TC*, X an object of C and (X, r,7) a standard
conjugate of X, define the trace of an endomorphism s : X — X as

tr(s) =r*oidg ® sor € Ende(I) ~ C.

The dimension of X is then defined as dim(X) = tr(idx) = r* or.

Reconstruction theorem for compact groups. We can now formulate the reconstruction
theorem of Tannaka and Krein in the language of x-categories.

Definition 6.5. A x-preserving fiber functor of a STC* C is a faithful functor of tensor x-categories
C — Hilb.

Now assume that for some STC* C we are given a x-preserving fiber functor E. Let Gg < End®(E)
be the subset of unitary monoidal natural endomorphism of E. This clearly is a group under
composition with neutral element the identity transformation, and if g € Gg, every component
gx is a unitary operator in the Hilbert space E(X), so we can identify Gg with a subset of
[ Ixcob(c) U(E(X)), where U(H) denotes the group of unitary operators of H. Since all the E(X)
are assumed to be of finite dimension, the unitary groups U(F (X)) are compact and by Tychonoff’s
theorem, the product over the objects of C is compact too. Since Gg is a closed subset, it is there-
fore a compact topological group.

We have a canonical action of Gg on all the Hilbert spaces E(X) in form of unitary representations
Tx, namely

mx(9) = gx

for g€ Gg.
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Proposition 6.6. Let C be a STC* with symmetric x-preserving fiber functor E. There is a
faithful symmetric strong monoidal *-preserving functor F : C — RepH(GE)H such that KoF = E
where K : Rep,, (Gg) — Hilb is the forgetful functor (H,7) v~ H.

(Sketch). One defines FI(X) = (E(X),nx) for X an object of C, and F(s) = E(s) for morphisms
s. All the conditions that a symmetric strong monoidal *-preserving functor has to satisfy are
easily checked, and faithfulness follows directly from the faithfulness of E. O

A categorical proof of the main theorem can be found in [HMO06| thm. B.6].

Theorem 6.7 (Tannaka-Krein duality). Let C be a STC* with symmetric x-preserving fiber
functor E. Then the functor F as in proposition @ 18 an equivalence of symmetric tensor -
categories.

In other words, a compact group G can be recovered as group of unitary natural endomorphisms
of the fiber functor of its category of unitary representation.

Recognition theorem for compact groups. The Tannaka reconstruction theorem shows
how to recover a compact group when its category of finite dimensional unitary representations is
known. Krein additionally provided a criterion for a category to be of the form Rep,, (G) for some
compact group G. This too can be reformulated in the language of *-categories.

Definition 6.8. Let C be a BTC*, X an object of C and (X,r,7) a standard conjugate of X.
The twist O(X) of X is defined by
@(X) = 7”*®idX Oidx@TX’X OT’@idx.

Lemma 6.9 ( [HMO6], lem. A.44]). The twist of a BTC" C satisfies the following properties

e For a morphism s : X - Y, one has ©(Y)os = s0O(X), i.e. © is a natural transformation

of the identity functor.
o O(X) is unitary for all objects X.
e IfCisa STC", then (X ®Y)=0(X)®0O(Y), i.e. © is a strong monoidal functor.

In a STC" we have 7% y = T)ZlX = Tx,x, and therefore ©(X*) = ©(X). Since by the above
lemma ©(X) is unitary, this yields ©(X)? = idx, and therefore in the case Endc(X) = C we get
O(X) = +1.

Remark 6.10. This is the TC”* variant of a ribbon category. The interpretation of such a twist is
best seen from the graphical calculus of such categories.

Definition 6.11. A STC” is called even if O(X) = idx for all objects X.

It is easy to see that the STC™ of finite dimensional Hilbert spaces as well as the STC* of unitary
representations of a compact group are even. This shows that a category which is of this form
must be even too.

Proposition 6.12. If a STC* C admits a x-preserving symmetric fiber functor E, then it is even.
Proof. We have ©(E(X)) = E(©(X)) [HM06, prop. A.45], and since Hilb is even we have
O(E£(X)) =idgx) = E(idx). But E is faithful, so we must have ©(X) = idx. O
Interestingly, being even is the only prerequisite for an STC* to be a representation category.

Theorem 6.13 (Tannaka-Krein duality, [HMO06, thm. B.11|). Fvery even STC* admits a *-
preserving symmetric fiber functor.

Combining this with theorem we see that every even STC” is of the form Repy, (G) for some
compact group G.

11 Here Repy, (G) denotes the category of finite dimensional unitary representations of G.
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6.3 Doplicher-Roberts reconstruction theorem

There is a fairly rigorous algebraic approach to quantum field theory given by the so-called Haag-
Kastler axioms. This algebraic quantum field theory is focused on the Heisenberg picture of
quantum mechanics, viewing the observables of the theory as the most fundamental quantities.
An algebraic quantum field theory over the Minkowski spacetime M is given by a net of local
observables, which is a copresheaf

A: O(M) — C*Alg

from the poset category of open double cones in the Minkowski space to the category of C*-algebras,
such that all the morphisms 2((O; < Os) are isometries. One interprets the C*-algebra 24(O) as the
algebra of observables measurable in the region O. Since the category of C*-algebras is complete,
we can form the directed limit

2:= lim 2A(0)
OeO(M)

which, by abuse of notation, I will also denote by 2. This is called the quasilocal algebra. The
concept of relativity is introduced in form of causality of measurements. In particular, the net of
local observables has to satisfy microcausality:

Definition 6.14. Two open double cones O; and Oy are space-like separated if (x — y)2 < 0 for
all x € O1 and y € Oy. Here 22 is understood as (x,z)x with the bilinear form of the Minkowski
space. A copresheaf 2 : O(M) — C*Alg satisfies microcausality if for all space-like separated
regions O; and Oy the commutator

[2(01),2(02)]
vanishes.

The observable algebras 2((O) used here are abstract C*-algebras in the sense that they are not
given as bounded operators on some Hilbert space. Therefore, to interpret elements of these
algebras as measurements of physical states we need to investigate representations of the abstract
observables. By construction, it suffices to examine representations of the quasilocal algebra 2;
one can then restrict to a certain region to obtain representations of the local observables 2((O).
In their two papers entitled "Local observables and particle statistics", S. Doplicher, R. Haag and
J.E. Roberts discussed so called superselection rules which are used to decide which of all the
representations of the quasilocal algebra are physically relevant. One can summarize these rules in
the following slogan.

Definition 6.15 (DHR superselection rule). The expectation values of all observables must ap-
proach the vacuum expectation values for measurements at infinitely far spacetime points.

I will formulate this criterion more precisely. Assume that we are given a fixed vacuum represen-
tation (Hp,mo) of the quasilocal algebra E

Definition 6.16. A DHR-representation is a representation 7 : 2 — U(H) such that 7|y o
and 7oy (ory are unitarily equivalent for all open double cones O. Here O denotes the causal
complement of the set O, which is the set theoretical complement of the causal cone of O in
Minkowski space. The DHR-representations from a category DHR(2|) with morphisms being the
usual bounded intertwining operators.

12By "representation" here I will always mean continuous *-homomorphism from the C*-algebra into the algebra
of unitary operators on a Hilbert space.
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An unitary equivalence class of irreducible DHR-representations is called superselection sector of
the net 2. One can interpret non-equivalent DHR-representations as different excitations of the
vacuum state, or more heuristically, the irreducible equivalence classes as particle types of the
quantum field theory. In this case, the conjugate representation of a DHR-representation corre-
sponding to a certain particle type corresponds to the antiparticle type.

Now suppose that (H,7) is some fixed representation of 2. Then for any endomorphism p : 2 — 2f,
the composite m o p also is a representation. In this manner, if we fix a vacuum representation
(Hy, mp), every endomorphism of the quasilocal algebra corresponds to a representation.

Definition 6.17. Let p be an endomorphism of 2l and O an open double cone. We call p localized
in the region O if p(A) = A for all A € 2A(0’"). We say that p is localized if there exists an open
double cone O such that p is localized in O.

Definition 6.18. Let p : A — 2 be localized in O. We call p transportable if for any other double
cone O; there exists an endomorphism p; of 2l and a unitary operator U € 2 such that

Up(A) = pr(A)U.

Denote by A(O) the transportable endomorphisms of 2 localized in O, and by A the class of
transportable endomorphisms of 2. In view of the correspondence of endomorphisms and repre-
sentations discussed above, the canonical choice of arrows between transportable endomorphisms
is given by

Homa(p,0) = {T €A : Tp(A) = o(A)T for all A e AU}

with composition given by the multiplication in 2. The unit 1 € 2 serves as the identity arrow
of each transportable endomorphism. With these definitions, it is clear that A is a x-category
with the *x-operation inherited from 2. Further, one can define a tensor product on A by setting
p®ac = poo for objects and T® S = Sp(T) for morphisms S : p — p’ and T : ¢ — ¢’ with tensor
unit given by the identity idg.

A lengthy calculation shows that this tensor product indeed makes A into a tensor x-category (see
e.g. [HMOG6, section 8]). The microcausality condition on the net of local observables makes it
possible to define a braiding, since one can simple "transport" two transportable endomorphisms
to a spacetime region where they commute. For spacetime dimensions of three or higher, this
braiding is indeed a symmetry [HMOG6, prop. 8.50].

Interestingly, the endomorphisms of 2 that are localized and transportable correspond exactly to
the representations which satisfy the DHR-criterion.

Proposition 6.19. There is a functor F : A — DHR(2) of *-categories such that F(p) = mpop
for objects p of A and F(s) = mo(s) for homomorphisms s : p — o. This functor is an equivalence
of categories.

The proof is a straight forward calculation and can be found in [HMO06| 8.57]. The importance of
this result lies in the fact that the category A possesses more structure than the original DHR-
category in the sense that we have an monoidal product. This will enable us to use Tannaka-style
reconstruction theorems on this category.

Usually, in a more classical approach to quantum field theory, one is given not only the algebra
of observables, but the full algebra of potentially unobservable fields acting on a Hilbert space of
states along with a group of gauge symmetries acting on the fields such that the observables are
exactly the fields invariant under the gauge symmetry. But in the beginning of this section I said
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that in the algebraic approach the observables are the fundamental quantities, and not the algebra
of all fields. This entails that we should be able to recover the full data of the theory, i.e. the field
algebra and the gauge group, from the net of local observables.

Let Af be the full subcategory of A of objects that have a conjugate. Then by construction Ay
is a STC™, but it is not even because the twist is given by +1 depending on weather the sector
is fermionic or bosonic. Therefore, we cannot use the Tannaka-Krein duality theorem from the
previous section here. Instead, in the article "A new duality theory for compact groups" [DR&9],
Doplicher and Roberts proved a generalization of this result: The Doplicher-Roberts reconstruction
theorem.

The Doplicher-Roberts reconstruction theorem. Recall from remark that one can
view an affine group scheme as an affine supergroup scheme, and then investigate the category of
super representations of this group scheme. In the same manner, given a compact topological group
G and an element k in the center of G of order two, one can consider the category Repy, (G, k)
of representations of G on finite dimensional Hilbert spaces with the symmetry given by the Zs-
grading induced by k: If (H, ) is a representation of G, then 7 (k) yields a decomposition of H
into the plus and minus one eigenspaces, making H a super Hilbert space. The symmetry is then
given as in the case of super vector spaces (see equation )

Lemma 6.20. The category Repy (G, k) is a STC*, and the twist O((H, 7)) is given by w(k).

Proof. The first claim is clear from the properties of the category of super vector spaces and the
category of representations of a compact group. In the category of finite dimensional Hilbert
spaces, the conjugate of a Hilbert space H is given by the Hilbert space dual HY, and if {e;};er is
a basis of H with dual basis {f?};c, the corresponding morphisms are given by r = Diel fi®e;
and 7 = Y, _;e; ® f'. One easily verifies that these are intertwiners for the trivial representation
on the Hilbert space C and the tensor product of the representations m on H and 7™ on H", where
T is the complex conjugate representation of 7. Therefore (HY,7) is a conjugate object of (H, ),
and it even is a standard conjugate. Now let {e;},c; be the eigenvector basis of m(k), where the
first | basis elements correspond to the (41) eigenspace and the others to the (—1) eigenspace.
The adjoint map r* is given by the evaluation HY ®c H — C, ¢ ® v — ¢(v), and from definition
[6-8] the twist is then defined by

O((H, 7)) =(H ~C®c H ™2, gy @ HeH ", v o neH “9, co 0 ~ H)
e 1@e— ) [l@e®e; Y 50, §)f @e; @ei = s(j4)ej,

el el

where s(4,j) is (—1) if ¢ and j are greater than [, and (+1) else. Since s(j,j)e; is equal to w(k)e;
by construction, this proves the claim. O

Proposition 6.21. Let G be a compact group. Then the unitary monoidal natural endomorphisms
of the identity functor on Rep,y (G) form an abelian group isomorphic to the center of G.

Proof. Let k be an element of the center and (H,7) an irreducible representation of G. Then
w(k) : H — H is an intertwiner for the representation 7, and therefore by Schur’s lemma we
must have 7(k) = w(g,r)idg for some scalar w(g ). Define a family of morphisms o ) =
W, midg,xy ¢ (H,m) — (H,7) for all irreducible representations and extend this to a natural
endomorphism of the identity functor (this is possible since the representation theory of compact
groups is completely reducible, see [FH04]). This clearly is a unitary monoidal natural isomorphism.
Conversely, let « be such a unitary monoidal natural endomorphism of the identity functor. Then
if K denotes the forgetful functor from Repy, (G) to the category of Hilbert spaces, K(«a) is an
unitary monoidal natural transformation of K, and by Tannaka-Krein duality there is an element
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g € G such that K(a(g,x)) = n(g) for all representations (H, ) of G. Since K sends morphisms
to themselves, this entails (g ) = 7(g), and therefore 7(g) must be an intertwiner for 7. Since
this is true for all representations, g must be an element of the center. O

The Doplicher-Roberts theorem shows that the generalization from the category Repy (G) to
Repy (G, k) already suffices to describe all STC"’s, not just even ones.

Theorem 6.22 (Doplicher-Roberts reconstruction theorem). Let C be a STC*. Then there exists
a compact group G together with an element k of order two in the center of G and an equivalence
F: C— Repy (G, k) of symmetric tensor x-categories. In particular, if K : Repy (G, k) — sHilb
1s the forgetful functor to the category of super Hilbert spaces, the composite E := KoF : C — sHilb
s a super fiber functor.

Sketch. Define a "bosonization" C of C as follows: As tensor *-category, let C = C, and define a
new braiding by
Py = (_1)<1—9<X>>(1—<9(Y>>/47Xy7

where © is the twist in C. One verifies that C is indeed a STC* and that it is even as such.
Then by theoremthere is a compact group G such that C~ Rep,,(G). Applying proposition
to this category, the twist ©® in C defines a unitary monoidal endomorphism of the identity
functor and therefore corresponds to an element k in the center of G such that ©((H, 7)) = 7 (k)
for all (H,7) in Repy, (G), and since O((H,7))? = idy we get k? = e. One then goes on to show
that C ~ Repy (G, k), which essentially follows since C is related to C in the same way that
Repy, (G, k) is related to Repy (G). O

A full proof of this can be found in [HMO06| thm. B.18]. Using this theorem on the category Ay,
one can now recover the gauge group of the theory along with the distinction between bosonic and
fermionic fields, proving that indeed the net of local observables is the more fundamental quantity.

Remark 6.23. It is worth noting that these representations (H,7) in Repy, (G, k) come equipped
with a decomposition H = Hg@® H into a bosonic and fermionic subspace given by the eigenspaces
of w(k), but since the group G itself is still purely even there are no symmetries in G mixing
bosonic and fermionic states. In particular, 7(k) is equivariant since k is in the center of G, and
therefore every element of G must preserve the eigenspaces of this operator. In this sense, the
terminology "supergroup" for a tuple (G, k) prevalent in physics literature is very misleading, as
in a supersymmetric theory the symmetry group must indeed relate fermionic and bosonic states.

6.4 Deligne’s theorem and supersymmetry

In comparison to the Doplicher-Roberts reconstruction theorem, the theorem of Deligne actually
concerns itself with a generalization of groups to supergroups. In this section I will show how this
relaxation appears naturally in particle physics, and how this in turn strengthens the belief that
our particle model admits a supersymmetry.

Wigner’s classification of fundamental particles. The Poincaré group is the isometry group
of the Minkowski spacetime, and as such encompasses translations as an abelian subgroup. The
infinitesimal generators of these translations in the directions of the standard basis elements of M
form a quintuple P := (E, Py, Py, P3), which in physics is called the momentum operator. Recall
now that in special relativity the rest mass of a particle is related to its energy and momentum by
the energy-momentum relation £? = p? + m?. If the Poincaré group acts on a Hilbert space H
and v € H is an eigenvector of the operator P? := E? — P? — P? — P? with eigenvalue p?, then we
have

P%*y = E*v — P}v — P}v — Piv = p?v,

60



6 Applications in quantum field theory Sonja M. Farr

and therefore one interprets p as the rest mass of the particle in state v. One can show that the
operator P? is a Casimir element of the Poincaré group, and therefore the rest mass p together
with the eigenvalues of the other Casimir element, which are interpreted as the spin, labels the
irreducible unitary representations of the Poincaré group.

This connection between the defining features of fundamental particles and classification of irre-
ducible representations of the Poincaré group lead to Wigner’s classification of elementary particles,
which states that in a quantum field theory, the elementary particle species are in one-to-one cor-
respondence with the irreducible representations of the symmetry group of the theory. By the
Coleman-Mandula theorem mentioned in section [6.1] in case that the geometric symmetries are
given by the Poincaré group, the full symmetry group is a direct product of the Poincaré group and
the internal symmetry group, so that the fundamental particles are classified by the irreducible
representations of these two groups separately.

The category of particle species. Note that the category of unitary representations of the
symmetry, of which the irreducible representations form the simple objects, naturally admits the
structure of a tensor category. Even more general, it may be suggested that every sensible collec-
tion of particle species forms a tensor category: Suppose we are given some abstract collection of
objects that we know to be the particle species of our theory, together with all the possible inter-
actions between these particle species. This information can be assembled into a category Ptcl
whose objects are the particle species and whose arrows between two objects P and @ are all the
possible ways an instance of the species P can undergo an interaction that results in an instance
of species (). To make this into an abelian category, we define the hom-sets between two particle
species to be not just those arrows but their C-linear span. The simple objects of this category
will correspond to the fundamental particle species of the theory. In a physical theory we expect
there to be a possibility to make two particle species P and () into a new particle species P ® Q
whose instances are compound systems of instances of P and ). Note that the tensor product
of two fundamental particle species does not have to be fundamental anymore, just as the tensor
product of two irreducible representations usually is not irreducible. For example when given a
Fock space of an elementary particle, two-particle states are given by the tensor product of the
one-particle Hilbert space with itself. We also expect there to exist some type of vacuum I that
serves as a tensor unit for this monoidal product of forming compound systems. A braiding on
this tensor product is given by exchanging the instances of the particle species forming the tensor
product, and this braiding clearly is a symmetry, since we expect the system to be invariant under
exchanging two particles twice. Finally, we assume that every sensible theory admits the notion
of an anti-particle species PV for every particle species P. This entails that we have a notion of a
pair production morphisms I — P ® PV and of a particle-antiparticle annihilation P¥ @ P — [
which make the object PV a dual object of P.

In this exposition I followed the article [Sch16]. If one believes that all these elements, compound
systems, a vacuum and anti-particles, are necessary parts of a physical theory of elementary par-
ticles, then the category Ptcl will have the structure of a complex tensor category. If in addition
one believes that there should only be finitely many fundamental particles, as is customary in
most theories, this tensor category will be of subexponential growth (see [Del02} cor. 0.7]), and we
can apply Deligne’s theorem on tensor categories As a result we see that there is an affine
supergroup G and an element p € G(C) such that

Ptcl ~ Rep(G, p).

Then, again employing Wigner’s classification of fundamental particles, we see that the affine
supergroup G must be the spacetime symmetry group of our theory. Now this does not mean
that every spacetime symmetry group of a sensible physical theory must be supersymmetric; this
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is evidently false since the standard model exhibits all of the above described features and is
not supersymmetric. But it means that the most general context in which Wigner’s classification
and all the basic properties we expect from particle species can be true is a supersymmetric theory.

If one believes that the standard model is not yet a complete description of particle physics, then
this gives a good reason why one should look at supersymmetry as an extension of this theory.

Discussion of the result. As stated in the introduction, this interaction of Deligne’s theorem
with supersymmetry in quantum field theory was the original motivation for this thesis. It may
thus be asked how convincing this argumentation really is, and it which way it might be improved.
For a start, I have not specified very well what I mean by "particle species", but rather left it as
an abstract notion. Now in particle physics, one in fact uses Wigner’s classification, or to be more
precise the so called quantum numbers, to label the particle species of the standard model, so a
physicist might ask what could be meant by particle species if not "irreducible representation of
the symmetry group". The same issue arises with the tensor product of two particle species: What
exactly is an instance of this tensor product? One cannot simply take one instance of each particle
species, since we want to allow interaction between particles, and thus a system of two different
particles can take on many different particle contents. The tensor product in the DHR-category
avoids this issue by using the local nature of interactions, so there might be hope that there is a
well-defined tensor product employing methods from scattering theory. I have not been able to
define such an explicit monoidal structure, and further I have not been able to define the action of
this monoidal product on the morphisms of the particle species category. The connection between
dual objects and anti-particles there can also be found some deviation from the standard model.
For example, the annihilation of an electron-positron pair does not leave behind the vacuum, but
rather two photons carrying the energy and momentum of the electron and positron. Very simi-
larly, the electron-positron pair production emerges from an already existing photon rather than
the vacuum. Pair production and annihilation from and to the vacuum only handles so called
virtual particles, which cannot be observed.

At last, if one works trough all the issues with the category of particle species, there remains
the issue that while Deligne’s theorem talks about group objects (or supergroup objects for that
matter) in the category of affine schemes and their representations, in physics one usually requires
a topological group and its unitary representations. Also, Wigner did use all the unitary represen-
tations of the geometric symmetry group, not only the finite dimensional ones. For the Poincaré
group, this problem may be bypassed by using the representation theory for semi-direct products,
which only requires knowledge of some particular finite dimensional representations, but this does
not have to work in a general case.

I hope that moving forward there will be solutions found to all these inconsistencies.
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